DOUBLE PRECISION FUNCTION EPSLON (X) DOUBLE PRECISION X C C ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SIZE X. C DOUBLE PRECISION A,B,C,EPS C C THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS C SATISFYING THE FOLLOWING TWO ASSUMPTIONS, C 1. THE BASE USED IN REPRESENTING FLOATING POINT C NUMBERS IS NOT A POWER OF THREE. C 2. THE QUANTITY A IN STATEMENT 10 IS REPRESENTED TO C THE ACCURACY USED IN FLOATING POINT VARIABLES C THAT ARE STORED IN MEMORY. C THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO C FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING C ASSUMPTION 2. C UNDER THESE ASSUMPTIONS, IT SHOULD BE TRUE THAT, C A IS NOT EXACTLY EQUAL TO FOUR-THIRDS, C B HAS A ZERO FOR ITS LAST BIT OR DIGIT, C C IS NOT EXACTLY EQUAL TO ONE, C EPS MEASURES THE SEPARATION OF 1.0 FROM C THE NEXT LARGER FLOATING POINT NUMBER. C THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED C ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD. C C THIS VERSION DATED 4/6/83. C A = 4.0D0/3.0D0 10 B = A - 1.0D0 C = B + B + B EPS = DABS(C-1.0D0) IF (EPS .EQ. 0.0D0) GO TO 10 EPSLON = EPS*DABS(X) RETURN END DOUBLE PRECISION FUNCTION PYTHAG(A,B) DOUBLE PRECISION A,B C C FINDS DSQRT(A**2+B**2) WITHOUT OVERFLOW OR DESTRUCTIVE UNDERFLOW C DOUBLE PRECISION P,R,S,T,U P = DMAX1(DABS(A),DABS(B)) IF (P .EQ. 0.0D0) GO TO 20 R = (DMIN1(DABS(A),DABS(B))/P)**2 10 CONTINUE T = 4.0D0 + R IF (T .EQ. 4.0D0) GO TO 20 S = R/T U = 1.0D0 + 2.0D0*S P = U*P R = (S/U)**2 * R GO TO 10 20 PYTHAG = P RETURN END SUBROUTINE RS(NM,N,A,W,MATZ,Z,FV1,FV2,IERR) C INTEGER N,NM,IERR,MATZ DOUBLE PRECISION A(NM,N),W(N),Z(NM,N),FV1(N),FV2(N) C C THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF C SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK) C TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED) C OF A REAL SYMMETRIC MATRIX. C C ON INPUT C C NM MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM C DIMENSION STATEMENT. C C N IS THE ORDER OF THE MATRIX A. C C A CONTAINS THE REAL SYMMETRIC MATRIX. C C MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF C ONLY EIGENVALUES ARE DESIRED. OTHERWISE IT IS SET TO C ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS. C C ON OUTPUT C C W CONTAINS THE EIGENVALUES IN ASCENDING ORDER. C C Z CONTAINS THE EIGENVECTORS IF MATZ IS NOT ZERO. C C IERR IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN ERROR C COMPLETION CODE DESCRIBED IN THE DOCUMENTATION FOR TQLRAT C AND TQL2. THE NORMAL COMPLETION CODE IS ZERO. C C FV1 AND FV2 ARE TEMPORARY STORAGE ARRAYS. C C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY C C THIS VERSION DATED AUGUST 1983. C C ------------------------------------------------------------------ C IF (N .LE. NM) GO TO 10 IERR = 10 * N GO TO 50 C 10 IF (MATZ .NE. 0) GO TO 20 C .......... FIND EIGENVALUES ONLY .......... CALL TRED1(NM,N,A,W,FV1,FV2) CALL TQLRAT(N,W,FV2,IERR) GO TO 50 C .......... FIND BOTH EIGENVALUES AND EIGENVECTORS .......... 20 CALL TRED2(NM,N,A,W,FV1,Z) CALL TQL2(NM,N,W,FV1,Z,IERR) 50 RETURN END SUBROUTINE TQL2(NM,N,D,E,Z,IERR) C INTEGER I,J,K,L,M,N,II,L1,L2,NM,MML,IERR DOUBLE PRECISION D(N),E(N),Z(NM,N) DOUBLE PRECISION C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2,TST1,TST2,PYTHAG C C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2, C NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND C WILKINSON. C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971). C C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS C OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL METHOD. C THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO C BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS C FULL MATRIX TO TRIDIAGONAL FORM. C C ON INPUT C C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM C DIMENSION STATEMENT. C C N IS THE ORDER OF THE MATRIX. C C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. C C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX C IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY. C C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE C REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS C OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN C THE IDENTITY MATRIX. C C ON OUTPUT C C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT C UNORDERED FOR INDICES 1,2,...,IERR-1. C C E HAS BEEN DESTROYED. C C Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC C TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE, C Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED C EIGENVALUES. C C IERR IS SET TO C ZERO FOR NORMAL RETURN, C J IF THE J-TH EIGENVALUE HAS NOT BEEN C DETERMINED AFTER 30 ITERATIONS. C C CALLS PYTHAG FOR DSQRT(A*A + B*B) . C C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY C C THIS VERSION DATED AUGUST 1983. C C ------------------------------------------------------------------ c c unnecessary initialization of C3 and S2 to keep g77 -Wall happy c C3 = 0.0D0 S2 = 0.0D0 C IERR = 0 IF (N .EQ. 1) GO TO 1001 C DO I = 2, N E(I-1) = E(I) end do C F = 0.0D0 TST1 = 0.0D0 E(N) = 0.0D0 C DO 240 L = 1, N J = 0 H = DABS(D(L)) + DABS(E(L)) IF (TST1 .LT. H) TST1 = H C .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT .......... DO M = L, N TST2 = TST1 + DABS(E(M)) IF (TST2 .EQ. TST1) GO TO 120 C .......... E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT C THROUGH THE BOTTOM OF THE LOOP .......... end do C 120 IF (M .EQ. L) GO TO 220 130 IF (J .EQ. 30) GO TO 1000 J = J + 1 C .......... FORM SHIFT .......... L1 = L + 1 L2 = L1 + 1 G = D(L) P = (D(L1) - G) / (2.0D0 * E(L)) R = PYTHAG(P,1.0D0) D(L) = E(L) / (P + DSIGN(R,P)) D(L1) = E(L) * (P + DSIGN(R,P)) DL1 = D(L1) H = G - D(L) IF (L2 .GT. N) GO TO 145 C DO I = L2, N D(I) = D(I) - H end do C 145 F = F + H C .......... QL TRANSFORMATION .......... P = D(M) C = 1.0D0 C2 = C EL1 = E(L1) S = 0.0D0 MML = M - L C .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... DO 200 II = 1, MML C3 = C2 C2 = C S2 = S I = M - II G = C * E(I) H = C * P R = PYTHAG(P,E(I)) E(I+1) = S * R S = E(I) / R C = P / R P = C * D(I) - S * G D(I+1) = H + S * (C * G + S * D(I)) C .......... FORM VECTOR .......... DO 180 K = 1, N H = Z(K,I+1) Z(K,I+1) = S * Z(K,I) + C * H Z(K,I) = C * Z(K,I) - S * H 180 CONTINUE C 200 CONTINUE C P = -S * S2 * C3 * EL1 * E(L) / DL1 E(L) = S * P D(L) = C * P TST2 = TST1 + DABS(E(L)) IF (TST2 .GT. TST1) GO TO 130 220 D(L) = D(L) + F 240 CONTINUE C .......... ORDER EIGENVALUES AND EIGENVECTORS .......... DO 300 II = 2, N I = II - 1 K = I P = D(I) C DO 260 J = II, N IF (D(J) .GE. P) GO TO 260 K = J P = D(J) 260 CONTINUE C IF (K .EQ. I) GO TO 300 D(K) = D(I) D(I) = P C DO 280 J = 1, N P = Z(J,I) Z(J,I) = Z(J,K) Z(J,K) = P 280 CONTINUE C 300 CONTINUE C GO TO 1001 C .......... SET ERROR -- NO CONVERGENCE TO AN C EIGENVALUE AFTER 30 ITERATIONS .......... 1000 IERR = L 1001 RETURN END SUBROUTINE TQLRAT(N,D,E2,IERR) C INTEGER I,J,L,M,N,II,L1,MML,IERR DOUBLE PRECISION D(N),E2(N) DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLON,PYTHAG C C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT, C ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH. C C THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC C TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD. C C ON INPUT C C N IS THE ORDER OF THE MATRIX. C C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. C C E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE C INPUT MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY. C C ON OUTPUT C C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND C ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE C THE SMALLEST EIGENVALUES. C C E2 HAS BEEN DESTROYED. C C IERR IS SET TO C ZERO FOR NORMAL RETURN, C J IF THE J-TH EIGENVALUE HAS NOT BEEN C DETERMINED AFTER 30 ITERATIONS. C C CALLS PYTHAG FOR DSQRT(A*A + B*B) . C C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY C C THIS VERSION DATED AUGUST 1983. C C ------------------------------------------------------------------ c c unnecessary initialization of B and C to keep g77 -Wall happy c B = 0.0D0 C = 0.0D0 C IERR = 0 IF (N .EQ. 1) GO TO 1001 C DO I = 2, N E2(I-1) = E2(I) end do C F = 0.0D0 T = 0.0D0 E2(N) = 0.0D0 C DO 290 L = 1, N J = 0 H = DABS(D(L)) + DSQRT(E2(L)) IF (T .GT. H) GO TO 105 T = H B = EPSLON(T) C = B * B C .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT .......... 105 DO 110 M = L, N IF (E2(M) .LE. C) GO TO 120 C .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT C THROUGH THE BOTTOM OF THE LOOP .......... 110 CONTINUE C 120 IF (M .EQ. L) GO TO 210 130 IF (J .EQ. 30) GO TO 1000 J = J + 1 C .......... FORM SHIFT .......... L1 = L + 1 S = DSQRT(E2(L)) G = D(L) P = (D(L1) - G) / (2.0D0 * S) R = PYTHAG(P,1.0D0) D(L) = S / (P + DSIGN(R,P)) H = G - D(L) C DO I = L1, N D(I) = D(I) - H end do C F = F + H C .......... RATIONAL QL TRANSFORMATION .......... G = D(M) IF (G .EQ. 0.0D0) G = B H = G S = 0.0D0 MML = M - L C .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... DO 200 II = 1, MML I = M - II P = G * H R = P + E2(I) E2(I+1) = S * R S = E2(I) / R D(I+1) = H + S * (H + D(I)) G = D(I) - E2(I) / G IF (G .EQ. 0.0D0) G = B H = G * P / R 200 CONTINUE C E2(L) = S * G D(L) = H C .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST .......... IF (H .EQ. 0.0D0) GO TO 210 IF (DABS(E2(L)) .LE. DABS(C/H)) GO TO 210 E2(L) = H * E2(L) IF (E2(L) .NE. 0.0D0) GO TO 130 210 P = D(L) + F C .......... ORDER EIGENVALUES .......... IF (L .EQ. 1) GO TO 250 C .......... FOR I=L STEP -1 UNTIL 2 DO -- .......... DO 230 II = 2, L I = L + 2 - II IF (P .GE. D(I-1)) GO TO 270 D(I) = D(I-1) 230 CONTINUE C 250 I = 1 270 D(I) = P 290 CONTINUE C GO TO 1001 C .......... SET ERROR -- NO CONVERGENCE TO AN C EIGENVALUE AFTER 30 ITERATIONS .......... 1000 IERR = L 1001 RETURN END SUBROUTINE TRED1(NM,N,A,D,E,E2) C INTEGER I,J,K,L,N,II,NM,JP1 DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N) DOUBLE PRECISION F,G,H,SCALE C C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED1, C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). C C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX C TO A SYMMETRIC TRIDIAGONAL MATRIX USING C ORTHOGONAL SIMILARITY TRANSFORMATIONS. C C ON INPUT C C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM C DIMENSION STATEMENT. C C N IS THE ORDER OF THE MATRIX. C C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE C LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. C C ON OUTPUT C C A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANS- C FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER C TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED. C C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX. C C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL C MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO. C C E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E. C E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED. C C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY C C THIS VERSION DATED AUGUST 1983. C C ------------------------------------------------------------------ C DO 100 I = 1, N D(I) = A(N,I) A(N,I) = A(I,I) 100 CONTINUE C .......... FOR I=N STEP -1 UNTIL 1 DO -- .......... DO 300 II = 1, N I = N + 1 - II L = I - 1 H = 0.0D0 SCALE = 0.0D0 IF (L .LT. 1) GO TO 130 C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) .......... DO K = 1, L SCALE = SCALE + DABS(D(K)) end do C IF (SCALE .NE. 0.0D0) GO TO 140 C DO J = 1, L D(J) = A(L,J) A(L,J) = A(I,J) A(I,J) = 0.0D0 end do C 130 E(I) = 0.0D0 E2(I) = 0.0D0 GO TO 300 C 140 DO K = 1, L D(K) = D(K) / SCALE H = H + D(K) * D(K) end do C E2(I) = SCALE * SCALE * H F = D(L) G = -DSIGN(DSQRT(H),F) E(I) = SCALE * G H = H - F * G D(L) = F - G IF (L .EQ. 1) GO TO 285 C .......... FORM A*U .......... DO J = 1, L E(J) = 0.0D0 end do C DO 240 J = 1, L F = D(J) G = E(J) + A(J,J) * F JP1 = J + 1 IF (L .LT. JP1) GO TO 220 C DO K = JP1, L G = G + A(K,J) * D(K) E(K) = E(K) + A(K,J) * F end do C 220 E(J) = G 240 CONTINUE C .......... FORM P .......... F = 0.0D0 C DO J = 1, L E(J) = E(J) / H F = F + E(J) * D(J) end do C H = F / (H + H) C .......... FORM Q .......... DO J = 1, L E(J) = E(J) - H * D(J) end do C .......... FORM REDUCED A .......... DO J = 1, L F = D(J) G = E(J) C DO K = J, L A(K,J) = A(K,J) - F * E(K) - G * D(K) end do C end do C 285 DO J = 1, L F = D(J) D(J) = A(L,J) A(L,J) = A(I,J) A(I,J) = F * SCALE end do C 300 CONTINUE C RETURN END SUBROUTINE TRED2(NM,N,A,D,E,Z) C INTEGER I,J,K,L,N,II,NM,JP1 DOUBLE PRECISION A(NM,N),D(N),E(N),Z(NM,N) DOUBLE PRECISION F,G,H,HH,SCALE C C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2, C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). C C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A C SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING C ORTHOGONAL SIMILARITY TRANSFORMATIONS. C C ON INPUT C C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM C DIMENSION STATEMENT. C C N IS THE ORDER OF THE MATRIX. C C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE C LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. C C ON OUTPUT C C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX. C C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL C MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO. C C Z CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX C PRODUCED IN THE REDUCTION. C C A AND Z MAY COINCIDE. IF DISTINCT, A IS UNALTERED. C C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY C C THIS VERSION DATED AUGUST 1983. C C ------------------------------------------------------------------ C DO I = 1, N DO J = I, N Z(J,I) = A(J,I) end do D(I) = A(N,I) end do C IF (N .EQ. 1) GO TO 510 C .......... FOR I=N STEP -1 UNTIL 2 DO -- .......... DO 300 II = 2, N I = N + 2 - II L = I - 1 H = 0.0D0 SCALE = 0.0D0 IF (L .LT. 2) GO TO 130 C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) .......... DO K = 1, L SCALE = SCALE + DABS(D(K)) end do C IF (SCALE .NE. 0.0D0) GO TO 140 130 E(I) = D(L) C DO J = 1, L D(J) = Z(L,J) Z(I,J) = 0.0D0 Z(J,I) = 0.0D0 end do C GO TO 290 C 140 DO K = 1, L D(K) = D(K) / SCALE H = H + D(K) * D(K) end do C F = D(L) G = -DSIGN(DSQRT(H),F) E(I) = SCALE * G H = H - F * G D(L) = F - G C .......... FORM A*U .......... DO J = 1, L E(J) = 0.0D0 end do C DO 240 J = 1, L F = D(J) Z(J,I) = F G = E(J) + Z(J,J) * F JP1 = J + 1 IF (L .LT. JP1) GO TO 220 C DO K = JP1, L G = G + Z(K,J) * D(K) E(K) = E(K) + Z(K,J) * F end do C 220 E(J) = G 240 CONTINUE C .......... FORM P .......... F = 0.0D0 C DO J = 1, L E(J) = E(J) / H F = F + E(J) * D(J) end do C HH = F / (H + H) C .......... FORM Q .......... DO J = 1, L E(J) = E(J) - HH * D(J) end do C .......... FORM REDUCED A .......... DO 280 J = 1, L F = D(J) G = E(J) C DO K = J, L Z(K,J) = Z(K,J) - F * E(K) - G * D(K) end do C D(J) = Z(L,J) Z(I,J) = 0.0D0 280 CONTINUE C 290 D(I) = H 300 CONTINUE C .......... ACCUMULATION OF TRANSFORMATION MATRICES .......... DO 500 I = 2, N L = I - 1 Z(N,L) = Z(L,L) Z(L,L) = 1.0D0 H = D(I) IF (H .ne. 0.0D0) then DO K = 1, L D(K) = Z(K,I) / H end do C DO J = 1, L G = 0.0D0 DO K = 1, L G = G + Z(K,I) * Z(K,J) end do C DO K = 1, L Z(K,J) = Z(K,J) - G * D(K) end do end do end if C 380 DO K = 1, L Z(K,I) = 0.0D0 end do C 500 CONTINUE C 510 DO I = 1, N D(I) = Z(N,I) Z(N,I) = 0.0D0 end do C Z(N,N) = 1.0D0 E(1) = 0.0D0 RETURN END