### Fit a general linear mixed effects model ### ### Copyright 1997-2003 Jose C. Pinheiro, ### Douglas M. Bates ### Copyright 2006-2015 The R Core team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ # createConLin <- function(fixed, data = sys.frame(sys.parent()), random = pdSymm(eval(as.call(fixed[-2]))), ...) { if(!inherits(fixed, "formula") || length(fixed) != 3) stop("\nfixed-effects model must be a formula of the form \"resp ~ pred\"") REML <- FALSE reSt <- reStruct(random, REML = REML, data = NULL) groups <- getGroupsFormula(reSt) if(is.null(groups)) { if(inherits(data, "groupedData")) { groups <- getGroupsFormula(data) groupsL <- rev(getGroupsFormula(data, asList = TRUE)) Q <- length(groupsL) if(length(reSt) != Q) { # may need to repeat reSt if(length(reSt) != 1) { stop("incompatible lengths for 'random' and grouping factors") } auxForm <- eval(parse(text = paste("~", deparse(formula(random)[[2]]), "|", deparse(groups[[2]])))) reSt <- reStruct(auxForm, REML = REML, data = NULL) } else { names(reSt) <- names(groupsL) } } else { stop("'data' must inherit from \"groupedData\" class if 'random' does not define groups") } } ## create an lme structure containing the random effects model lmeSt <- lmeStruct(reStruct = reSt) ## extract a data frame with enough information to evaluate ## fixed, groups, reStruct, corStruct, and varStruct dataMix <- model.frame(formula = asOneFormula(formula(lmeSt), fixed, groups), data = data, drop.unused.levels = TRUE) origOrder <- row.names(dataMix) # preserve the original order ## sort the model.frame by groups and get the matrices and parameters ## used in the estimation procedures grps <- getGroups(dataMix, eval(parse(text = paste("~1", deparse(groups[[2]]), sep = "|")))) ## ordering data by groups if(inherits(grps, "factor")) { # single level ##"order" treats a single named argument peculiarly so must split this off ord <- order(grps) grps <- data.frame(grps) row.names(grps) <- origOrder names(grps) <- as.character(deparse((groups[[2]]))) } else { ord <- do.call(order, grps) ## making group levels unique for(i in 2:ncol(grps)) { grps[, i] <- as.factor(paste(as.character(grps[, i - 1]), as.character(grps[, i ]), sep = "/")) } } grps <- grps[ord, , drop = FALSE] dataMix <- dataMix[ord, , drop = FALSE] ## revOrder <- match(origOrder, row.names(dataMix)) # putting in orig. order ## obtaining basic model matrices N <- nrow(grps) Z <- model.matrix(reSt, dataMix) ncols <- attr(Z, "ncols") Names(lmeSt$reStruct) <- attr(Z, "nams") ## keeping the contrasts for later use in predict contr <- attr(Z, "contr") X <- model.frame(fixed, dataMix) auxContr <- lapply(X, function(el) if(inherits(el, "factor")) contrasts(el)) contr <- c(contr, auxContr[is.na(match(names(auxContr), names(contr)))]) contr <- contr[!vapply(contr, is.null, NA)] X <- model.matrix(fixed, X) y <- eval(fixed[[2]], dataMix) ncols <- c(ncols, dim(X)[2], 1) ## Q <- ncol(grps) ## creating the condensed linear model : list(Xy = array(c(Z, X, y), c(N, sum(ncols)), list(row.names(dataMix), c(colnames(Z), colnames(X), deparse(fixed[[2]])))), dims = MEdims(grps, ncols), logLik = 0, sigma = 0) # <- no "fixed Sigma" yet } simulate.lme <- function(object, nsim = 1, seed = as.integer(runif(1, 0, .Machine$integer.max)), m2, method = c("REML", "ML"), niterEM = c(40, 200), useGen, ...) { ## object is a list of arguments to lme, or an lme object from which the ## call is extracted, to define the null model ## m2 is an option list of arguments to lme to define the feared model if (inherits(nsim, "lm") || inherits(nsim, "lme")) stop("order of arguments in 'simulate.lme' has changed to conform with generic in R-2.2.0", domain = NA) ### FIXME? if(!ALT) behave like a regular simulate() method --> return 'base2' (see below) getResults1 <- function(conLin, nIter, pdClass, REML, ssq, p, pp1) { unlist(.C(mixed_combined, as.double(conLin$Xy), as.integer(unlist(conLin$dims)), double(ssq), as.integer(nIter), as.integer(pdClass), as.integer(REML), logLik = double(1), R0 = double(pp1), lRSS = double(1), info = integer(1), sigma = as.double(conLin$sigma))[c("info", "logLik")]) } getResults2 <- function(conLin, reSt, REML, control) { lmeSt <- lmeStruct(reStruct = reStruct(reSt, REML = REML)) attr(lmeSt, "conLin") <- conLin lmeSt <- Initialize(lmeSt, data = NULL, groups = NULL, control = control) attr(lmeSt, "conLin") <- MEdecomp(attr(lmeSt, "conLin")) aMs <- nlminb(c(coef(lmeSt)), function(lmePars) -logLik(lmeSt, lmePars), control = list(iter.max = control$msMaxIter, eval.max = control$msMaxEval, trace = control$msVerbose)) c(info = aMs$flags[1], logLik = -aMs$value) } if(!exists(".Random.seed", envir = .GlobalEnv)) runif(1) # initialize the RNG if necessary RNGstate <- get(".Random.seed", envir = .GlobalEnv) on.exit(assign(".Random.seed", RNGstate, envir = .GlobalEnv)) set.seed(seed) if (inherits(object, "lme")) { # given as an lme object fit1 <- object object <- as.list(object$call[-1]) } else { object <- as.list(match.call(lme, substitute(object))[ -1 ]) fit1 <- do.call(lme, object) } if (length(fit1$modelStruct) > 1) stop("models with \"corStruct\" and/or \"varFunc\" objects not allowed") reSt1 <- fit1$modelStruct$reStruct condL1 <- do.call(createConLin, object) pdClass1 <- vapply(reSt1, data.class, "") pdClass1 <- match(pdClass1, c("pdSymm", "pdDiag", "pdIdent", "pdCompSymm", "pdLogChol"), 0) - 1 control1 <- lmeControl() if (!is.null(object$control)) { control1[names(object$control)] <- object$control } control1$niterEM <- niterEM[1] sig <- fit1$sigma DeltaInv <- pdMatrix(reSt1, factor = TRUE) for(i in names(DeltaInv)) { DeltaInv[[i]] <- sig * DeltaInv[[i]] } if (missing(useGen)) { useGen <- any(pdClass1 == -1) } nullD <- condL1$dims N <- nullD$N Q <- nullD$Q p1 <- nullD$ncol[Q + 1] pp11 <- p1 * (p1 + 1) ycol1 <- sum(nullD$ncol) qvec <- nullD$qvec[1:Q] ssq1 <- sum(qvec^2) csq1 <- cumsum(c(1, qvec[ - Q])) csq2 <- cumsum(qvec) ngrp <- nullD$ngrps ## base for creating response base <- condL1$Xy[, ycol1 - (nullD$ncol[Q + 1]:1), drop = FALSE] %*% fixef(fit1) ind <- lapply(1:Q, function(i) rep(1:ngrp[i], nullD$ZXlen[[i]])) if (ML <- !is.na(match("ML", method))) nML <- array(0, c(nsim, 2), list(1:nsim, c("info", "logLik"))) if (REML <- !is.na(match("REML", method))) nREML <- array(0, c(nsim, 2), list(1:nsim, c("info", "logLik"))) if ((ALT <- !missing(m2))) { if (inherits(m2, "lme")) { # given as an lme object fit2 <- m2 m2 <- as.list(m2$call[-1]) } else { m2 <- as.list(match.call(lme, substitute(m2))[ -1 ]) if (is.null(m2$random)) { m2$random <- asOneSidedFormula(object$fixed[-2]) } aux <- object aux[names(m2)] <- m2 m2 <- aux fit2 <- do.call(lme, m2) } if (length(fit2$modelStruct) > 1) { stop("models with \"corStruct\" and/or \"varFunc\" objects not allowed") } condL2 <- do.call(createConLin, m2) reSt2 <- fit2$modelStruct$reStruct control2 <- lmeControl() if (!is.null(m2$control)) { control2[names(m2$control)] <- m2$control } control2$niterEM <- niterEM[2] pdClass2 <- vapply(fit2$modelStruct$reStruct, data.class, "") pdClass2 <- match(pdClass2, c("pdSymm", "pdDiag", "pdIdent", "pdCompSymm", "pdLogChol"), 0) - 1 useGen <- useGen || any(pdClass2 == -1) altD <- condL2$dims ssq2 <- sum((altD$qvec[1:altD$Q])^2) p2 <- altD$ncol[altD$Q + 1] pp12 <- p2 * (p2 + 1) ycol2 <- sum(altD$ncol) if (ML) aML <- nML if (REML) aREML <- nREML } for(i in 1:nsim) { base2 <- base + rnorm(N, sd = sig) ## = X beta + eps ## now add 'Z b' as Q different terms \sum_{j=1}^Q Z_j b_j : for(j in 1:Q) { base2 <- base2 + ((array(rnorm(ngrp[j] * qvec[j]), c(ngrp[j], qvec[j]), list(1:ngrp[j], NULL)) %*% DeltaInv[[j]])[ind[[j]], , drop = FALSE] * condL1$Xy[,csq1[j]:csq2[j], drop = FALSE]) %*% rep(1, qvec[j]) } condL1$Xy[, ycol1] <- base2 if (REML) { nREML[i,] <- if (useGen) getResults2(condL1, reSt1, TRUE, control1) else getResults1(condL1, niterEM[1], pdClass1, TRUE, ssq1, p1, pp11) } if (ML) { nML[i,] <- if (useGen) getResults2(condL1, reSt1, FALSE, control1) else getResults1(condL1, niterEM[1], pdClass1, FALSE, ssq1, p1, pp11) } if (ALT) { condL2$Xy[, ycol2] <- base2 if (REML) { aREML[i,] <- if (useGen) getResults2(condL2, reSt2, TRUE, control2) else getResults1(condL2, niterEM[2], pdClass2, TRUE, ssq2, p2, pp12) } if (ML) { aML[i,] <- if (useGen) getResults2(condL2, reSt2, FALSE, control2) else getResults1(condL2, niterEM[2], pdClass2, FALSE, ssq2, p2, pp12) } } } ## for i = 1,..,nsim v.null <- v.alt <- list() if (ML) { nML[, "logLik"] <- nML[, "logLik"] + N * (log(N) - (1 + log(2*pi)))/2 v.null$ML <- nML if (ALT) { aML[, "logLik"] <- aML[, "logLik"] + N * (log(N) - (1 + log(2*pi)))/2 v.alt$ML <- aML } } if (REML) { nREML[, "logLik"] <- nREML[, "logLik"] + (N - p1) * (log(N - p1) - (1 + log(2*pi)))/2 v.null$REML <- nREML if (ALT) { aREML[, "logLik"] <- aREML[, "logLik"] + (N - p2) * (log(N - p2) - (1 + log(2*pi)))/2 v.alt$REML <- aREML } } df <- p1 + length(coef(reSt1)) + 1 if (ALT) df <- abs(df - (p2 + length(coef(reSt2)) + 1)) ## return : structure(if(ALT && (ML || REML)) list(null = v.null, alt = v.alt) else list(null = v.null), class = "simulate.lme", call = match.call(), seed = seed, df = df, useGen = useGen) } print.simulate.lme <- function(x, ...) { ox <- x if (is.null(attr(x, "useGen"))) { # from simulate.lme attr(x$null, "dims") <- NULL if (!is.null(x$alt)) { attr(x$alt, "dims") <- NULL } } else { attr(x, "useGen") <- attr(x, "df") <- NULL } attr(x, "seed") <- attr(x, "call") <- NULL NextMethod() invisible(ox) } plot.simulate.lme <- function(x, form = y ~ x | df * method, df = attr(x, "df"), weights, xlab = "Empirical p-value", ylab = "Nominal p-value", xlim = c(0.037, 0.963), ylim = c(0.037, 0.963), aspect = 1, strip = function(...) strip.default(..., style = 1), ...) { if (is.null(df)) stop("no degrees of freedom specified") ML <- !is.null(x$null$ML) if(ML) { if (is.null(x$alt$ML)) stop("plot method only implemented for comparing models") okML <- x$null$ML[, "info"] < 8 & x$alt$ML[, "info"] < 8 } REML <- !is.null(x$null$REML) if(REML) { if (is.null(x$alt$REML)) stop("plot method only implemented for comparing models") okREML <- x$null$REML[, "info"] < 8 & x$alt$REML[, "info"] < 8 } if ((ldf <- length(df)) > 1) { df <- sort(unique(df)) if (missing(weights)) { weights <- rep.int(1/ldf, ldf) } else { if (!identical(weights,FALSE) && length(weights) != ldf) stop("degrees of freedom and weights must have the same length") } } else { weights <- FALSE } useWgts <- (length(weights) != 1) if (any(df < 0)) { stop("negative degrees of freedom not allowed") } else { if ((ldf == 1) && (df == 0)) { stop("more than one degree of freedom is needed when one them is zero.") } } if (ML) { MLstat <- rev(sort(2 * pmax(0, x$alt$ML[okML, "logLik"] - x$null$ML[okML,"logLik"]))) MLy <- lapply(df, function(df, x) { if (df > 0) pchisq(x, df, lower.tail=FALSE) else 1*(x == 0) }, x = MLstat) dfC <- paste("df",df,sep="=") if (useWgts) { # has weights if (ldf == 2) { # will interpolate MLy <- c(MLy[[1]], weights[1] * MLy[[1]] + weights[2] * MLy[[2]], MLy[[2]]) MLdf <- rep(c(dfC[1], paste("Mix(",df[1],",",df[2],")",sep=""), dfC[2]), rep(length(MLstat), ldf + 1)) } else { aux <- weights[1] * MLy[[1]] auxNam <- paste("Mix(",df[1],sep="") for(i in 2:ldf) { aux <- aux + weights[i] * MLy[[i]] auxNam <- paste(auxNam, ",", df[i],sep="") } auxNam <- paste(auxNam, ")",sep="") MLy <- c(unlist(MLy), aux) MLdf <- rep(c(dfC, auxNam), rep(length(MLstat), ldf + 1)) } MLx <- rep((seq_along(MLstat) - 0.5)/length(MLstat), ldf + 1) } else { MLy <- unlist(MLy) MLdf <- rep(dfC, rep(length(MLstat), ldf)) MLx <- rep((seq_along(MLstat) - 0.5)/length(MLstat), ldf) } auxInd <- MLdf != "df=0" meth <- rep("ML", length(MLy)) Mdf <- MLdf } else { MLy <- MLdf <- MLx <- auxInd <- meth <- Mdf <- NULL } if (REML) { REMLstat <- rev(sort(2 * pmax(0, x$alt$REML[okREML, "logLik"] - x$null$REML[okREML, "logLik"]))) REMLy <- lapply(df, function(df, x) { if (df > 0) { pchisq(x, df, lower.tail = FALSE) } else { 1*(x == 0) } }, x = REMLstat) dfC <- paste("df",df,sep="=") if (useWgts) { # has weights if (ldf == 2) { # will interpolate REMLy <- c(REMLy[[1]], weights[1] * REMLy[[1]] + weights[2] * REMLy[[2]], REMLy[[2]]) REMLdf <- rep(c(dfC[1], paste("Mix(",df[1],",",df[2],")",sep=""), dfC[2]), rep(length(REMLstat), ldf + 1)) } else { aux <- weights[1] * REMLy[[1]] auxNam <- paste("Mix(",df[1],sep="") for(i in 2:ldf) { aux <- aux + weights[i] * REMLy[[i]] auxNam <- paste(auxNam, ",", df[i],sep="") } auxNam <- paste(auxNam, ")",sep="") REMLy <- c(unlist(REMLy), aux) REMLdf <- rep(c(dfC, auxNam), rep(length(REMLstat), ldf + 1)) } REMLx <- rep((seq_along(REMLstat) - 0.5)/length(REMLstat), ldf + 1) } else { REMLy <- unlist(REMLy) REMLdf <- rep(dfC, rep(length(REMLstat), ldf)) REMLx <- rep((seq_along(REMLstat) - 0.5)/length(REMLstat), ldf) } auxInd <- c(auxInd, REMLdf != "df=0") meth <- c(meth, rep("REML", length(REMLy))) Mdf <- c(Mdf, REMLdf) } else { REMLy <- REMLdf <- REMLx <- NULL } meth <- meth[auxInd] Mdf <- Mdf[auxInd] Mdf <- ordered(Mdf, levels = unique(Mdf)) frm <- data.frame(x = c(MLx, REMLx)[auxInd], y = c(MLy, REMLy)[auxInd], df = Mdf, method = meth) ## names(frm$x) <- rep(1, nrow(frm)) ## if (df[1] == 0) { ## names(frm$x)[substring(frm$df,1,3) == "Mix"] <- 1 - weights[1] ## if (missing(ylim)) { ## ylim <- c(0.0384, 1) ## } ## } xyplot(form, data = frm, type = c('g', 'l'), ## panel = function(x, y, ...) { ## panel.grid() ## panel.xyplot(x, y, type = "l", ...) ## if ((dfType <- as.double(names(x)[1])) == 1) { ## panel.abline( 0, as.double(names(x)[1]), lty = 2 ) ## } else { ## panel.xyplot(c(0,dfType,dfType,1), c(0,dfType,1,1), ## type="l", lty = 2, col = 1) ## } ## }, strip = strip, xlab = xlab, ylab = ylab, aspect = aspect, xlim = xlim, ylim = ylim, ...) }