### Methods for the class of random-effects structures. ### ### Copyright 1997-2003 Jose C. Pinheiro, ### Douglas M. Bates ### Copyright 2006-2016 The R Core team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ # ##*## Generics that should be implemented for any reStruct class ###*# Constructor reStruct <- function(object, pdClass = "pdLogChol", REML = FALSE, data = sys.frame(sys.parent())) { ## object can be: ## 1) a named list of formulas or pdMats with grouping factors as names ## (assume same order of nesting as order of names) ## 2) a formula of the form ~ x | g or ~ x | g1/g2/../gn ## 3) a list of formulas like ~x | g ## 4) a formula like ~x, a pdMat object, or a list of such ## formulas or objects . In this case, the data used to ## initialize the reStruct will be required to inherit from class ## "groupedData" ## 5) another reStruct object ## parametrization specifies the pdMat constructor to be used for all ## formulas used in object if (inherits(object, "reStruct")) { # little to do, return object if (!missing(REML)) attr(object, "settings")[1] <- as.integer(REML) object[] <- lapply(object, function(el, data) { pdMat(el, data = data) }, data = data) return(object) } plen <- NULL if (inherits(object, "formula")) { # given as a formula if (is.null(grpForm <- getGroupsFormula(object, asList = TRUE))) { object <- list( object ) } else { if (length(object) == 3) { # nlme type of formula object <- eval(parse(text = paste(deparse(getResponseFormula(object)[[2]]), deparse(getCovariateFormula(object)[[2]], width.cutoff=500), sep = "~"))) } else { object <- getCovariateFormula(object) } object <- rep( list(object), length( grpForm ) ) names( object ) <- names( grpForm ) } } else if (inherits(object, "pdMat")) { # single group, as pdMat if (is.null(formula(object))) { stop("\"pdMat\" element must have a formula") } object <- list(object) } else { if (data.class(object) != "list") { stop("'object' must be a list or a formula") } ## checking if nlme-type list - unnamed list of 2-sided formulas if (is.null(names(object)) && all(unlist(lapply(object, function(el) { inherits(el, "formula") && length(el) == 3})))) { object <- list(object) } else { ## checking if elements are valid object <- lapply(object, function(el) { if (inherits(el, "pdMat")) { if (is.null(formula(el))) { stop("\"pdMat\" elements must have a formula") } return(el) } if (inherits(el, "formula")) { grpForm <- getGroupsFormula(el) if (!is.null(grpForm)) { el <- getCovariateFormula(el) attr(el, "grpName") <- deparse(grpForm[[2]]) } return(el) } else { if (data.class(el) == "list" && all(unlist(lapply(el, function(el1) { inherits(el1, "formula") && length(el1) == 3 })))) { return(el) } else { stop("elements in 'object' must be formulas or \"pdMat\" objects") } } }) } if (is.null(namObj <- names(object))) { namObj <- rep("", length(object)) } aux <- unlist(lapply(object, function(el) { if (inherits(el, "formula") && !is.null(attr(el, "grpName"))) { attr(el, "grpName") } else "" })) auxNam <- namObj == "" if (any(auxNam)) { namObj[auxNam] <- aux[auxNam] } names(object) <- namObj } ## converting elements in object to pdMat objects object <- lapply(object, function(el, pdClass, data) { # if (data.class(el) == "pdSymm") # warning("class pdSymm may cause problems if using analytic gradients") pdMat(el, pdClass = pdClass, data = data) }, pdClass = pdClass, data = data) object <- rev(object) # inner to outer groups if (all(unlist(lapply(object, isInitialized)))) { plen <- unlist(lapply(object, function(el) length(coef(el)))) } pC <- unlist(lapply(object, data.class)) pC <- match(pC, c("pdSymm", "pdDiag", "pdIdent", "pdCompSymm", "pdLogChol"), 0) - 1 # if (any(pC == -1)) { # multiple nesting # pC <- -1 # } ## at this point, always require asDelta = TRUE and gradHess = 0 attr(object, "settings") <- c(as.integer(REML), 1, 0, pC) attr(object, "plen") <- plen class(object) <- "reStruct" object } ###*# Methods for pdMat generics corMatrix.reStruct <- function(object, ...) { if (!isInitialized(object)) { stop("cannot access the matrix of uninitialized objects") } as.list(rev(lapply(object, corMatrix))) } pdFactor.reStruct <- function(object) { unlist(lapply(object, pdFactor)) } pdMatrix.reStruct <- function(object, factor = FALSE) { if (!isInitialized(object)) { stop("cannot access the matrix of uninitialized objects") } as.list(rev(lapply(object, pdMatrix, factor))) } ###*# Methods for standard generics as.matrix.reStruct <- function(x, ...) pdMatrix(x) coef.reStruct <- function(object, unconstrained = TRUE, ...) { unlist(lapply(object, coef, unconstrained)) } "coef<-.reStruct" <- function(object, ..., value) { if (is.null(plen <- attr(object, "plen"))) { stop("cannot change the parameter when ength of parameters is undefined") } if (length(value) != sum(plen)) { stop("cannot change parameter length of initialized objects") } ends <- cumsum(plen) starts <- 1 + c(0, ends[-length(ends)]) for (i in seq_along(object)) { coef(object[[i]]) <- value[(starts[i]):(ends[i])] } object } formula.reStruct <- function(x, asList = FALSE, ...) { as.list(lapply(x, formula, asList)) } getGroupsFormula.reStruct <- function(object, asList = FALSE, sep) { if (is.null(val <- rev(formula(object)))) { stop("cannot extract groups formula without a formula") } if (is.null(nVal <- names(val))) return(NULL) if (asList) { for(i in nVal) { val[[i]] <- eval(parse(text = paste("~",i))) } } else { val <- eval(parse(text = paste("~",paste(nVal, collapse = "/")))) } val } isInitialized.reStruct <- function(object) all(unlist(lapply(object, isInitialized))) Initialize.reStruct <- function(object, data, conLin, control = list(niterEM = 20), ...) { ## initialize reStruct object, possibly getting initial estimates seqO <- seq_along(object) ## check if names are defined lNams <- unlist(lapply(object, function(el) length(Names(el)))) == 0 if (any(lNams)) { # need to resolve formula names aux <- seqO[lNams] object[aux] <- lapply(object[aux], function(el, data) { pdConstruct(el, el, data = data) }, data = data) } ## obtaining the parameters mapping plen <- unlist(lapply(object, function(el) { if (isInitialized(el)) { length(coef(el)) } else { matrix(el) <- diag(length(Names(el))) length(coef(el)) } })) if (!all(plen > 0)) { stop("all elements of a \"reStruct\" object must have a non-zero size") } attr(object, "plen") <- plen ## checking initialization isIni <- unlist(lapply(object, isInitialized)) if (!all(isIni)) { # needs initialization dims <- conLin$dims Q <- dims$Q qvec <- dims$qvec[1:Q] auxInit <- lapply(split(0.375^2 * apply((conLin$Xy[, 1:sum(qvec), drop = FALSE])^2, 2, sum)/ rep(dims$ngrps[1:Q], qvec), rep(1:Q, qvec)), function(x) diag(x, length(x))) } for(i in seqO) { if (isIni[i]) { object[[i]] <- solve(object[[i]]) #working with precisions } else { matrix(object[[i]]) <- auxInit[[i]] } NULL } MEEM(object, conLin, control$niterEM) # refine initial estimates with EM } logDet.reStruct <- function(object, ...) vapply(object, logDet, numeric(1)) logLik.reStruct <- function(object, conLin, ...) { if(any(!is.finite(conLin$Xy))) return(-Inf) ## 17-11-2015; Fixed sigma patch; SH Heisterkamp; Quantitative Solutions dims <- conLin$dims REML <- as.integer(attr(object, "settings"))[1] val <- .C(mixed_loglik, as.double(conLin$Xy), as.integer(unlist(conLin$dims)), as.double(pdFactor(object)), as.integer(attr(object, "settings")), loglik = double(1), lRSS = double(1), as.double(conLin$sigma)) if (conLin$sigma > 0 && REML == 1) { ## nc <- dims$ncol; p <- nc[dims$Q + 1] N <- dims$N aux <- N * log(conLin$sigma) - exp(val[["lRSS"]]) / (2*conLin$sigma) val[["loglik"]] + aux } else { val[["loglik"]] } } "matrix<-.reStruct" <- function(object, value) { if (data.class(value) != "list") value <- list(value) if (length(value) != length(object)) { stop("cannot change the length of 'object'") } value <- rev(value) # same order as object for(i in seq_along(object)) { matrix(object[[i]]) <- value[[i]] } object } model.matrix.reStruct <- function(object, data, contrast = NULL, ...) { if (is.null(form <- formula(object, asList = TRUE))) { stop("cannot extract model matrix without formula") } form1 <- asOneFormula(form) if (length(form1) > 0) { data <- model.frame(form1, data = data) } else { data <- data.frame("(Intercept)" = rep(1, nrow(data))) } any2list <- function( object, data, contrast ) { form2list <- function(form, data, contrast) { if (length(asOneFormula( form )) == 0) {# the ~ 1 case return(list("(Intercept)" = rep(1, dim(data)[1]))) } as.data.frame(unclass(model.matrix(form, model.frame(form, data), contrast))) } if (inherits( object, "formula" )) { return( form2list( object, data, contrast ) ) } if (is.list( object ) ) { return( unlist(lapply(object, form2list, data = data, contrast = contrast), recursive = FALSE ) ) } return( NULL) } value <- as.list(lapply(form, any2list, data = data, contrast = contrast)) ## save the contrasts currently in effect for later predictions contr <- as.list(lapply( as.data.frame(data), function(x) if( inherits( x, "factor" ) && length(levels(x)) > 1) contrasts(x) else NULL )) contr[names(contrast)] <- contrast ncols <- lengths(value) nams <- if (length(value) == 1) { names(value[[1]]) } else { paste(rep(names(value), ncols), unlist(lapply(value, names)), sep = ".") } structure(matrix(unlist(value), nrow = nrow(data), dimnames = list(row.names(data), nams)), ncols = ncols, nams = lapply(value, names), contr = contr) } Names.reStruct <- function(object, ...) { as.list(lapply(object, Names)) } "Names<-.reStruct" <- function(object, ..., value) { if (length(object) != length(value)) { stop("incompatible lengths for object names") } for(i in seq_along(object)) { Names(object[[i]]) <- value[[i]] } object } needUpdate.reStruct <- function(object) FALSE print.reStruct <- function(x, sigma = 1, reEstimates, verbose = FALSE, ...) { ox <- x if (isInitialized(x)) { nobj <- length(x) if (is.null(names(x))) names(x) <- nobj:1 aux <- t(array(rep(names(x), nobj), c(nobj, nobj))) aux[lower.tri(aux)] <- "" x[] <- rev(x) names(x) <- rev(apply(aux, 1, function(x) paste(x[x != ""], collapse = " %in% "))) cat("Random effects:\n") for(i in seq_along(x)) { print(summary(x[[i]]), sigma, Level = names(x)[i], resid = (i == length(x)), ...) if (verbose) { cat("Random effects estimates:\n") print(reEstimates[[i]]) } cat("\n") } } else { cat("Uninitialized random effects structure\n") } invisible(ox) } recalc.reStruct <- function(object, conLin, ...) { conLin[["logLik"]] <- conLin[["logLik"]] + logLik(object, conLin) conLin } solve.reStruct <- function(a, b, ...) { a[] <- lapply(a, solve) a } summary.reStruct <- function(object, ...) object update.reStruct <- function(object, data, ...) object "[.reStruct" <- function(x, ...) { val <- NextMethod() if (length(val)) class(val) <- "reStruct" val }