### Methods for generics from newGenerics.q for some standard classes ### ### Copyright 1997-2003 Jose C. Pinheiro, ### Douglas M. Bates ### Copyright 2006-2016 The R Core team ##*## Methods for some of the generics in newGenerics.q for standard classes Dim.default <- function(object, ...) dim(object) getCovariate.data.frame <- function(object, form = formula(object), data) { ## Return the primary covariate if (!(inherits(form, "formula"))) { stop("'form' must be a formula") } aux <- getCovariateFormula(form) if (length(all.vars(aux)) > 0) { eval(aux[[2]], object) } else { rep(1, dim(object)[1]) } } getData.nls <- function(object) { mCall <- object$call ## avoid partial matches here. data <- eval(if("data" %in% names(object)) object$data else mCall$data) if (is.null(data)) return(data) naAct <- object[["na.action"]] if (!is.null(naAct)) { ## guessing here: known values (omit, exclude) work. data <- if (inherits(naAct, "omit")) data[-naAct, ] else if (inherits(naAct, "exclude")) data else eval(mCall$na.action)(data) } subset <- mCall$subset if (!is.null(subset)) { subset <- eval(asOneSidedFormula(subset)[[2]], data) data <- data[subset, ] } data } getGroups.data.frame <- ## Return the groups associated with object according to form for level function(object, form = formula(object), level, data, sep = "/") { if (!missing(data)) { stop( "data argument to \"data.frame\" method for 'getGroups' does not make sense" ) } if (inherits(form, "formula")) { grpForm <- getGroupsFormula(form, asList = TRUE, sep = sep) if (is.null(grpForm)) { ## will use right hand side of form as the group formula grpForm <- splitFormula(asOneSidedFormula(form[[length(form)]]), sep = sep) names(grpForm) <- unlist( lapply( grpForm, function(el) deparse( el[[ length(el) ]] ) ) ) } if (any(vapply(grpForm, function(el) length(all.vars(el)) != 1, NA))) stop("invalid formula for groups") form <- grpForm } else if (data.class(form) == "list") { if (!all(vapply(form, function(el) inherits(el, "formula"), NA))) { stop("'form' must have all components as formulas") } } else { stop("'form' can only be a formula, or a list of formulas") } vlist <- lapply(form, function(x, N) { val <- eval(x[[length(x)]], object) if (length(val) == 1L) # repeat groups as.factor(rep(val, N)) else as.factor(val)[drop = TRUE] }, N = nrow(object)) if (length(vlist) == 1) return(vlist[[1]]) # ignore level - only one choice ## make the list into a data frame with appropriate names value <- do.call("data.frame", vlist) row.names(value) <- row.names(object) ## needed for fitted.lme if (missing(level)) return(value) if (is.character(level)) { nlevel <- match(level, names(vlist)) if (any(aux <- is.na(nlevel))) { stop(gettextf("level of %s does not match formula %s", level[aux], sQuote(deparse(form))), domain = "NA") } } else { nlevel <- as.numeric(level) if (any(aux <- is.na(match(nlevel, 1:ncol(value))))) { stop(gettextf("level of %s does not match formula %s", level[aux], sQuote(deparse(form))), domain = "NA") } } if (length(nlevel) > 1) return(value[, nlevel]) # multicolumn selection if (nlevel == 1) return(value[, 1]) # no need to do more work value <- value[, 1:nlevel] val <- as.factor(do.call("paste", c(lapply(as.list(value), as.character), sep = sep))) if (inherits(value[, 1], "ordered")) { value <- value[do.call("order", value),] aux <- unique(do.call("paste", c(lapply(as.list(value), as.character), sep = sep))) ordered(val, aux) } else { ordered(val, unique(as.character(val))) } } getResponse.data.frame <- function(object, form = formula(object)) { ## Return the response, the evaluation of the left hand side of a formula ## on object if (!(inherits(form, "formula") && (length(form) == 3))) { stop("'form' must be a two-sided formula") } eval(form[[2]], object) } getGroupsFormula.default <- ## Return the formula(s) for the groups associated with object. ## The result is a one-sided formula unless asList is TRUE in which case ## it is a list of formulas, one for each level. function(object, asList = FALSE, sep = "/") { form <- formula(object) if (!inherits(form, "formula")){ stop("'form' argument must be a formula") } form <- form[[length(form)]] if (!(length(form) == 3L && form[[1L]] == as.name("|"))) ## no conditioning expression return(NULL) ## val <- list( asOneSidedFormula( form[[ 3 ]] ) ) val <- splitFormula(asOneSidedFormula(form[[3]]), sep = sep) names(val) <- unlist(lapply(val, function(el) deparse(el[[2]]))) # if (!missing(level)) { # if (length(level) == 1) { # return(val[[level]]) # } else { # val <- val[level] # } # } if (asList) as.list(val) else as.formula(eval(parse(text = paste("~", paste(names(val), collapse = sep))))) } Names.formula <- function(object, data = list(), exclude = c("pi", "."), ...) { if (!is.list(data)) { return(NULL) } # no data to evaluate variable names allV <- all.vars(object) allV <- allV[is.na(match(allV, exclude))] if (length(allV) == 0) { if (attr(terms(object), "intercept")) "(Intercept)" ## else NULL } else if (!anyNA(match(allV, names(data)))) dimnames(model.matrix(object, model.frame(object, data)))[[2]] ## else NULL } Names.listForm <- function(object, data = list(), exclude = c("pi", "."), ...) { pnames <- as.character(unlist(lapply(object, `[[`, 2L))) nams <- lapply(object, function(el) Names(getCovariateFormula(el), data, exclude)) if (is.null(nams[[1]])) return(NULL) val <- c() for(i in seq_along(object)) val <- c(val, if ((length(nams[[i]]) == 1) && (nams[[i]] == "(Intercept)")) pnames[i] else paste(pnames[i], nams[[i]], sep = ".")) val } needUpdate.default <- function(object) { val <- attr(object, "needUpdate") !is.null(val) && val } ##--- needs Trellis/Lattice : pairs.compareFits <- function(x, subset, key = TRUE, ...) { object <- x if(!missing(subset)) { object <- object[subset,,] } dims <- dim(object) if(dims[3] == 1) { stop("at least two coefficients are needed") } dn <- dimnames(object) coefs <- array(c(object), c(dims[1]*dims[2], dims[3]), list(rep(dn[[1]], dims[2]), dn[[3]])) if(dims[3] > 2) { # splom tt <- list(coefs = coefs, grp = ordered(rep(dn[[2]], rep(dims[1], dims[2])), levels = dn[[2]])) args <- list(~ coefs, data = tt, groups = tt$grp, panel = function(x, y, subscripts, groups, ...) { x <- as.numeric(x) y <- as.numeric(y) panel.superpose(x, y, subscripts, groups) aux <- groups[subscripts] aux <- aux == unique(aux)[1] lsegments(x[aux], y[aux], x[!aux], y[!aux], lty = 2, lwd = 0.5) }) } else { tt <- list(x = coefs[,1], y = coefs[,2], grp = ordered(rep(dn[[2]], rep(dims[1], dims[2])), levels = dn[[2]])) args <- list(y ~ x, data = tt, groups = tt$grp, panel = function(x, y, subscripts, groups, ...) { x <- as.numeric(x) y <- as.numeric(y) panel.grid() panel.superpose(x, y, subscripts, groups) aux <- groups[subscripts] aux <- aux == unique(aux)[1] lsegments(x[aux], y[aux], x[!aux], y[!aux], lty = 2, lwd = 0.5) }, xlab = dn[[3]][1], ylab = dn[[3]][2]) } dots <- list(...) args[names(dots)] <- dots if(is.logical(key)) { if(key && length(unique(tt$grp)) > 1) { args[["key"]] <- list(points = Rows(trellis.par.get("superpose.symbol"), 1:2), text = list(levels = levels(tt$grp)), columns = 2) } } else { args[["key"]] <- key } if(dims[3] > 2) do.call("splom", args) else do.call("xyplot", args) } ##--- needs Trellis/Lattice : plot.nls <- function(x, form = resid(., type = "pearson") ~ fitted(.), abline, id = NULL, idLabels = NULL, idResType = c("pearson", "normalized"), grid, ...) ## Diagnostic plots based on residuals and/or fitted values { object <- x if (!inherits(form, "formula")) { stop("'form' must be a formula") } ## constructing data allV <- all.vars(asOneFormula(form, id, idLabels)) allV <- allV[is.na(match(allV,c("T","F","TRUE","FALSE")))] if (length(allV) > 0) { data <- getData(object) if (is.null(data)) { # try to construct data alist <- lapply(as.list(allV), as.name) names(alist) <- allV alist <- c(list(quote(data.frame)), alist) mode(alist) <- "call" data <- eval(alist, sys.parent(1)) } else { if (any(naV <- is.na(match(allV, names(data))))) { stop(sprintf(ngettext(sum(naV), "%s not found in data", "%s not found in data"), allV[naV]), domain = NA) } } } else data <- NULL if (inherits(data, "groupedData")) { # save labels and units, if present ff <- formula(data) rF <- deparse(getResponseFormula(ff)[[2]]) cF <- c_deparse(getCovariateFormula(ff)[[2]]) lbs <- attr(data, "labels") unts <- attr(data, "units") if (!is.null(lbs$x)) cL <- paste(lbs$x, unts$x) else cF <- NULL if (!is.null(lbs$y)) rL <- paste(lbs$y, unts$y) else rF <- NULL } else { rF <- cF <- NULL } ## argument list dots <- list(...) if (length(dots) > 0) args <- dots else args <- list() ## appending object to data data <- as.list(c(as.list(data), . = list(object))) ## covariate - must always be present covF <- getCovariateFormula(form) .x <- eval(covF[[2]], data) if (!is.numeric(.x)) { stop("covariate must be numeric") } argForm <- ~ .x argData <- data.frame(.x = .x, check.names = FALSE) if (is.null(xlab <- attr(.x, "label"))) { xlab <- deparse(covF[[2]]) if (!is.null(cF) && (xlab == cF)) xlab <- cL #### BUG!!!! else if (!is.null(rF) && (xlab == rF)) xlab <- rL } if (is.null(args$xlab)) args$xlab <- xlab ## response - need not be present respF <- getResponseFormula(form) if (!is.null(respF)) { .y <- eval(respF[[2]], data) if (is.null(ylab <- attr(.y, "label"))) { ylab <- deparse(respF[[2]]) if (!is.null(cF) && (ylab == cF)) ylab <- cL else if (!is.null(rF) && (ylab == rF)) ylab <- rL } argForm <- .y ~ .x argData[, ".y"] <- .y if (is.null(args$ylab)) args$ylab <- ylab } ## groups - need not be present grpsF <- getGroupsFormula(form) if (!is.null(grpsF)) { gr <- splitFormula(grpsF, sep = "*") for(i in seq_along(gr)) { auxGr <- all.vars(gr[[i]]) for(j in auxGr) { argData[[j]] <- eval(as.name(j), data) } } if (length(argForm) == 2) argForm <- eval(parse(text = paste("~ .x |", deparse(grpsF[[2]])))) else argForm <- eval(parse(text = paste(".y ~ .x |", deparse(grpsF[[2]])))) } ## adding to args list args <- c(list(argForm, data = argData), args) ## if (is.null(args$strip)) { ## args$strip <- function(...) strip.default(..., style = 1) ## } if (is.null(args$cex)) args$cex <- par("cex") if (is.null(args$adj)) args$adj <- par("adj") if (!is.null(id)) { # identify points in plot idResType <- match.arg(idResType) id <- switch(mode(id), numeric = { if ((id <= 0) || (id >= 1)) { stop("'id' must be between 0 and 1") } as.logical(abs(resid(object, type = idResType)) > -qnorm(id / 2)) }, call = eval(asOneSidedFormula(id)[[2]], data), stop("'id' can only be a formula or numeric") ) if (is.null(idLabels)) { idLabels <- getGroups(object) if (length(idLabels) == 0) idLabels <- 1:object$dims$N idLabels <- as.character(idLabels) } else { if (mode(idLabels) == "call") { idLabels <- as.character(eval(asOneSidedFormula(idLabels)[[2]], data)) } else if (is.vector(idLabels)) { if (length(idLabels <- unlist(idLabels)) != length(id)) { stop("'idLabels' of incorrect length") } idLabels <- as.character(idLabels) } else { stop("'idLabels' can only be a formula or a vector") } } } ## defining abline, if needed if (missing(abline)) { if (missing(form)) { # r ~ f abline <- c(0, 0) } else { abline <- NULL } } #assign("id", id , where = 1) #assign("idLabels", idLabels, where = 1) #assign("abl", abline, where = 1) assign("abl", abline) ## defining the type of plot if (length(argForm) == 3) { if (is.numeric(.y)) { # xyplot plotFun <- "xyplot" if (is.null(args$panel)) { args <- c(args, panel = list(function(x, y, subscripts, ...) { x <- as.numeric(x) y <- as.numeric(y) dots <- list(...) if (grid) panel.grid() panel.xyplot(x, y, ...) if (any(ids <- id[subscripts])){ ltext(x[ids], y[ids], idLabels[subscripts][ids], cex = dots$cex, adj = dots$adj) } if (!is.null(abl)) { if (length(abl) == 2) panel.abline(a = abl, ...) else panel.abline(h = abl, ...) } })) } } else { # assume factor or character plotFun <- "bwplot" if (is.null(args$panel)) { args <- c(args, panel = list(function(x, y, ...) { if (grid) panel.grid() panel.bwplot(x, y, ...) if (!is.null(abl)) { panel.abline(v = abl[1], ...) } })) } } } else { plotFun <- "histogram" if (is.null(args$panel)) { args <- c(args, panel = list(function(x, ...) { if (grid) panel.grid() panel.histogram(x, ...) if (!is.null(abl)) { panel.abline(v = abl[1], ...) } })) } } ## defining grid if (missing(grid)) { if (plotFun == "xyplot") grid <- TRUE else grid <- FALSE } # assign("grid", grid, where = 1) do.call(plotFun, as.list(args)) } #pruneLevels.factor <- function(object) object[drop = TRUE] ##*## Plot method for ACF objects plot.ACF <- function(x, alpha = 0, xlab = "Lag", ylab = "Autocorrelation", grid = FALSE, ...) { object <- x ylim <- range(object$ACF) if (alpha) { assign("stdv", qnorm(1-alpha/2)/sqrt(attr(object,"n.used"))) stMax <- max(stdv) ylim <- c(min(c(-stMax, ylim[1])), max(c(ylim[2], stMax))) } assign("alpha", as.logical(alpha)) assign("grid", grid) xyplot(ACF ~ lag, object, ylim = ylim, panel = function(x, y, ...) { x <- as.numeric(x) y <- as.numeric(y) if (grid) panel.grid() panel.xyplot(x, y, type = "h") panel.abline(0, 0) if (alpha) { llines(x, stdv, lty = 2) llines(x, -stdv, lty = 2) } }, xlab = xlab, ylab = ylab, ...) } plot.augPred <- function(x, key = TRUE, grid = FALSE, ...) { labels <- list(xlab = paste(attr(x, "labels")$x, attr(x, "units")$x), ylab = paste(attr(x, "labels")$y, attr(x, "units")$y)) labels <- labels[unlist(lapply(labels, function(el) length(el) > 0))] args <- c(list(attr(x, "formula"), groups = quote(.type), data = x, strip = function(...) strip.default(..., style = 1), panel = if (length(levels(x[[".type"]])) == 2) { ## single prediction level function(x, y, subscripts, groups, ...) { if (grid) panel.grid() orig <- groups[subscripts] == "original" panel.xyplot(x[orig], y[orig], ...) panel.xyplot(x[!orig], y[!orig], ..., type = "l") } } else { # multiple prediction levels function(x, y, subscripts, groups, ...) { if (grid) panel.grid() orig <- groups[subscripts] == "original" panel.xyplot(x[orig], y[orig], ...) panel.superpose(x[!orig], y[!orig], subscripts[!orig], groups, ..., type = "l") } }), labels) ## perhaps include key argument allowing logical values dots <- list(...) args[names(dots)] <- dots if (is.logical(key) && key) { levs <- levels(x[[".type"]]) if ((lLev <- length(levs)) > 2) { # more than one levels lLev <- lLev - 1 levs <- levs[1:lLev] aux <- !is.na(match(substring(levs, 1, 8), "predict.")) if (sum(aux) > 0) { levs[aux] <- substring(levs[aux], 9) } args[["key"]] <- list(lines = c(Rows(trellis.par.get("superpose.line"), 1:lLev), list(size = rep(3, lLev))), text = list(levels = levs), columns = min(6, lLev)) } } else { args[["key"]] <- key } assign("grid", grid) do.call("xyplot", args) } plot.compareFits <- function(x, subset, key = TRUE, mark = NULL, ...) { object <- x if(!missing(subset)) { object <- object[subset,,] } dims <- dim(object) dn <- dimnames(object) assign("mark", rep(mark, rep(dims[1] * dims[2], dims[3]))) tt <- data.frame(group = ordered(rep(dn[[1]], dims[2] * dims[3]), levels = dn[[1]]), coefs = as.vector(object), what = ordered(rep(dn[[3]], rep(dims[1] * dims[2], dims[3])), levels = dn[[3]]), grp = ordered(rep(rep(dn[[2]], rep(dims[1], dims[2])), dims[3]), levels = dn[[2]])) args <- list(group ~ coefs | what, data = tt, scales = list(x=list(relation="free")), strip = function(...) strip.default(..., style = 1), xlab = "", groups = tt$grp, panel = function(x, y, subscripts, groups, ...) { x <- as.numeric(x) y <- as.numeric(y) dot.line <- trellis.par.get("dot.line") panel.abline(h = y, lwd = dot.line$lwd, lty = dot.line$lty, col = dot.line$col) if(!is.null(mark)) { panel.abline(v = mark[subscripts][1], lty = 2) } panel.superpose(x, y, subscripts, groups) }) dots <- list(...) args[names(dots)] <- dots if(is.logical(key)) { if(key && length(unique(tt$grp)) > 1) { args[["key"]] <- list(points = Rows(trellis.par.get("superpose.symbol"), 1:2), text = list(levels = levels(tt$grp)), columns = 2) } } else { args[["key"]] <- key } do.call("dotplot", args) } plot.Variogram <- function(x, smooth, showModel, sigma = NULL, span = 0.6, xlab = "Distance", ylab = "Semivariogram", type = "p", ylim, grid = FALSE, ...) { object <- x trlLin <- trellis.par.get("superpose.line") ## coll <- attr(object, "collapse") modVrg <- attr(object, "modelVariog") lineT <- 1 if (!is.na(match(type, c("l","o","b")))) { lineT <- lineT + 1 } if (missing(showModel)) { showModel <- !is.null(modVrg) } if (showModel) { if (is.null(modVrg)) { stop("no model variogram available with 'showModel = TRUE'") } assign("ltyM", trlLin$lty[lineT]) assign("colM", trlLin$col[lineT]) assign("modVrg", modVrg) lineT <- lineT + 1 } if (missing(smooth)) { smooth <- !showModel } if (smooth) { assign("ltyS", trlLin$lty[lineT]) assign("colS", trlLin$col[lineT]) } assign("smooth", smooth) assign("showModel", showModel) assign("span", span) assign("type", type) assign("sigma", sigma) assign("grid", grid) if (missing(ylim)) { ylim <- c(0, max(object$variog)) } xyplot(variog ~ dist, object, ylim = ylim, panel = function(x, y, ...) { if (grid) panel.grid() panel.xyplot(x, y, type = type, ...) if (showModel) { panel.xyplot(modVrg$dist, modVrg$variog, type = "l", col = colM, lty = ltyM, ...) } if (smooth) { panel.loess(x, y, span = span, col = colS, lty = ltyS, ...) } if (!is.null(sigma)) { panel.abline(c(sigma, 0), lty = 2) } }, xlab = xlab, ylab = ylab, ...) } print.compareFits <- function(x, ...) { # Will need to be changed for S4! print(unclass(x), ...) invisible(x) } print.correlation <- ## Print only the lower triangle of a correlation matrix function(x, title = " Correlation:", rdig = 3, ...) { p <- dim(x)[2] if (p > 1) { cat(title, "\n") ll <- lower.tri(x) x[ll] <- format(round(x[ll], digits = rdig)) x[!ll] <- "" if (!is.null(colnames(x))) { colnames(x) <- abbreviate(colnames(x), minlength = rdig + 3) } print(x[-1, - p, drop = FALSE], ..., quote = FALSE) } invisible(x) } ##if(R.version$major <= 1 && R.version$minor < 3) ## not in R 1.3 and later ##--- needs Trellis/Lattice : qqnorm.nls <- function(y, form = ~ resid(., type = "p"), abline = NULL, id = NULL, idLabels = NULL, grid = FALSE, ...) ## normal probability plots for residuals { object <- y if (!inherits(form, "formula")) { stop("'form' must be a formula") } ## constructing data allV <- all.vars(asOneFormula(form, id, idLabels)) allV <- allV[is.na(match(allV,c("T","F","TRUE","FALSE")))] if (length(allV) > 0) { data <- getData(object) if (is.null(data)) { # try to construct data alist <- lapply(as.list(allV), as.name) names(alist) <- allV alist <- c(as.list(quote(data.frame)), alist) mode(alist) <- "call" data <- eval(alist, sys.parent(1)) } else { if (any(naV <- is.na(match(allV, names(data))))) { stop(sprintf(ngettext(sum(naV), "%s not found in data", "%s not found in data"), allV[naV]), domain = NA) } } } else data <- NULL ## argument list dots <- list(...) if (length(dots) > 0) args <- dots else args <- list() ## appending object to data data <- as.list(c(as.list(data), . = list(object))) ## covariate - must always be present covF <- getCovariateFormula(form) .x <- eval(covF[[2]], data) labs <- attr(.x, "label") if (is.null(labs) || ((labs != "Standardized residuals") && (labs != "Normalized residuals") && (substring(labs, 1, 9) != "Residuals"))) { stop("only residuals allowed") } if (is.null(args$xlab)) args$xlab <- labs if (is.null(args$ylab)) args$ylab <- "Quantiles of standard normal" fData <- qqnorm(.x, plot.it = FALSE) data[[".y"]] <- fData$x data[[".x"]] <- fData$y dform <- ".y ~ .x" if (!is.null(grp <- getGroupsFormula(form))) { dform <- paste(dform, deparse(grp[[2]]), sep = "|") } if (!is.null(id)) { # identify points in plot id <- switch(mode(id), numeric = { if ((id <= 0) || (id >= 1)) { stop("'id' must be between 0 and 1") } if (labs == "Normalized residuals") { as.logical(abs(resid(object, type="normalized")) > -qnorm(id / 2)) } else { as.logical(abs(resid(object, type="pearson")) > -qnorm(id / 2)) } }, call = eval(asOneSidedFormula(id)[[2]], data), stop("'id' can only be a formula or numeric") ) if (is.null(idLabels)) { idLabels <- getGroups(object) if (length(idLabels) == 0) idLabels <- 1:object$dims$N idLabels <- as.character(idLabels) } else { if (mode(idLabels) == "call") { idLabels <- as.character(eval(asOneSidedFormula(idLabels)[[2]], data)) } else if (is.vector(idLabels)) { if (length(idLabels <- unlist(idLabels)) != length(id)) { stop("'idLabels' of incorrect length") } idLabels <- as.character(idLabels) } else { stop("'idLabels' can only be a formula or a vector") } } } # assign("id", if (is.null(id)) NULL else as.logical(as.character(id)), # frame = 1) assign("id", if (is.null(id)) NULL else as.logical(as.character(id))) assign("idLabels", as.character(idLabels)) assign("grid", grid) assign("abl", abline) if (is.null(args$strip)) { args$strip <- function(...) strip.default(..., style = 1) } if (is.null(args$cex)) args$cex <- par("cex") if (is.null(args$adj)) args$adj <- par("adj") args <- c(list(eval(parse(text = dform)), data = substitute(data)), args) if (is.null(args$panel)) { args <- c(list(panel = function(x, y, subscripts, ...){ x <- as.numeric(x) y <- as.numeric(y) dots <- list(...) if (grid) panel.grid() panel.xyplot(x, y, ...) if (any(ids <- id[subscripts])){ ltext(x[ids], y[ids], idLabels[subscripts][ids], cex = dots$cex, adj = dots$adj) } if (!is.null(abl)) { if (length(abl) == 2) panel.abline(a = abl, ...) else panel.abline(h = abl, ...) } }), args) } do.call("xyplot", args) } Variogram.default <- function(object, distance, ...) { ld <- length(distance) lo <- length(object) if (ld != round(lo*(lo-1)/2)) { stop("'distance' and 'object' have incompatible lengths") } val <- outer(object, object, function(x,y) ((x - y)^2)/2) val <- val[lower.tri(val)] val <- data.frame(variog = val, dist = as.numeric(distance)) class(val) <- c("Variogram", "data.frame") val } ## local function for complete deparsing c_deparse <- function(...) paste(deparse(..., width.cutoff=500), collapse="")