### Functions that are used in several parts of the nlme library ### but do not belong to any specific part ### ### Copyright 2006-2016 The R Core team ### Copyright 1997-2003 Jose C. Pinheiro, ### Douglas M. Bates ### ### This program is free software; you can redistribute it and/or modify ### it under the terms of the GNU General Public License as published by ### the Free Software Foundation; either version 2 of the License, or ### (at your option) any later version. ### ### This program is distributed in the hope that it will be useful, ### but WITHOUT ANY WARRANTY; without even the implied warranty of ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ### GNU General Public License for more details. ### ### A copy of the GNU General Public License is available at ### http://www.r-project.org/Licenses/ svd.d <- function(x) La.svd(x, nu=0L, nv=0L)$d allCoef <- ## Combines different coefficient vectors into one vector, keeping track ## of which coefficients came from which object function(..., extract = coef) { dots <- list(...) theta <- lapply(dots, extract) len <- lengths(theta) num <- seq_along(len) which <- if (sum(len) > 0) outer(rep(num, len), num, "==") else array(FALSE, c(1, length(len))) cnames <- unlist(as.list(sys.call()[-1])) dimnames(which) <- list(NULL, cnames[cnames != substitute(extract)]) theta <- unlist(theta) attr(theta, "map") <- which theta } allVarsRec <- ## Recursive version of all.vars function(object) { if (is.list(object)) { unlist(lapply(object, allVarsRec)) } else { all.vars(object) } } asOneFormula <- ## Constructs a linear formula with all the variables used in a ## list of formulas, except for the names in omit function(..., omit = c(".", "pi")) { names <- unique(allVarsRec(list(...))) names <- names[is.na(match(names, omit))] if (length(names)) eval(parse(text = paste("~", paste(names, collapse = "+")))[[1]]) else ~1 } compareFits <- ## compares coeffificients from different fitted objects function(object1, object2, which = 1:ncol(object1)) { dn1 <- dimnames(object1) dn2 <- dimnames(object2) aux <- rep(NA, length(dn1[[1]])) if (any(aux1 <- is.na(match(dn2[[2]], dn1[[2]])))) { object1[,dn2[[2]][aux1]] <- aux } if (any(aux1 <- is.na(match(dn1[[2]], dn2[[2]])))) { object2[,dn1[[2]][aux1]] <- aux } dn1 <- dimnames(object1) c1 <- deparse(substitute(object1)) c2 <- deparse(substitute(object2)) if (any(sort(dn1[[1]]) != sort(dn2[[1]]))) { stop("objects must have coefficients with same row names") } ## putting object2 in same order object2 <- object2[dn1[[1]], dn1[[2]], drop = FALSE] object1 <- object1[, which, drop = FALSE] object2 <- object2[, which, drop = FALSE] dn1 <- dimnames(object1) dm1 <- dim(object1) out <- array(0, c(dm1[1], 2, dm1[2]), list(dn1[[1]], c(c1,c2), dn1[[2]])) for(i in dn1[[2]]) { out[,,i] <- cbind(object1[[i]], object2[[i]]) } class(out) <- "compareFits" out } fdHess <- function(pars, fun, ..., .relStep = .Machine$double.eps^(1/3), minAbsPar = 0) ## Use a Koschal design to establish a second order model for the response { pars <- as.numeric(pars) npar <- length(pars) incr <- pmax(abs(pars), minAbsPar) * .relStep baseInd <- diag(npar) frac <- c(1, incr, incr^2) cols <- list(0, baseInd, -baseInd) for ( i in seq_along(pars)[ -npar ] ) { cols <- c( cols, list( baseInd[ , i ] + baseInd[ , -(1:i) ] ) ) frac <- c( frac, incr[ i ] * incr[ -(1:i) ] ) } indMat <- do.call( "cbind", cols) shifted <- pars + incr * indMat indMat <- t(indMat) Xcols <- list(1, indMat, indMat^2) for ( i in seq_along(pars)[ - npar ] ) { Xcols <- c( Xcols, list( indMat[ , i ] * indMat[ , -(1:i) ] ) ) } coefs <- solve(do.call("cbind", Xcols), apply(shifted, 2, fun, ...)) / frac Hess <- diag( coefs[ 1 + npar + seq_along(pars) ], ncol = npar ) Hess[ row(Hess) > col (Hess) ] <- coefs[ -(1:(1 + 2 * npar)) ] list(mean = coefs[ 1 ], gradient = coefs[ 1 + seq_along(pars) ], Hessian = (Hess + t(Hess)) ) } gapply <- ## Apply a function to the subframes of a data.frame ## If "apply" were generic, this would be the method for groupedData function(object, which, FUN, form = formula(object), level, groups = getGroups(object, form, level), ...) { if (!inherits(object, "data.frame")) { stop("object must inherit from \"data.frame\"") } ## Apply a function to the subframes of a groupedData object if (missing(groups)) { # formula and level are required if (!inherits(form, "formula")) { stop("'form' must be a formula") } if (is.null(grpForm <- getGroupsFormula(form, asList = TRUE))) { ## will use right hand side of form as groups formula grpForm <- splitFormula(asOneSidedFormula(form[[length(form)]])) } if (missing(level)) level <- length(grpForm) else if (length(level) != 1) { stop("only one level allowed in 'gapply'") } groups <- groups # forcing evaluation } if (!missing(which)) { switch(mode(which), character = { wchNot <- is.na(match(which, names(object))) if (any(wchNot)) { stop(sprintf(ngettext(sum(wchNot), "%s not matched", "%s not matched"), paste(which[wchNot], collapse = ",")), domain = NA) } }, numeric = { if (any(is.na(match(which, 1:ncol(object))))) { stop(gettextf("'which' must be between 1 and %d", ncol(object)), domain = NA) } }, stop("'which' can only be character or integer") ) object <- object[, which, drop = FALSE] } val <- lapply(X = split(object, groups), FUN = FUN, ...) if (is.atomic(val[[1]]) && length(val[[1]]) == 1) { val <- unlist(val) } val } getCovariateFormula <- function(object) { ## Return the primary covariate formula as a one sided formula form <- formula(object) if (!(inherits(form, "formula"))) { stop("formula(object) must return a formula") } form <- form[[length(form)]] if (length(form) == 3 && form[[1]] == as.name("|")){ # conditional expression form <- form[[2]] } eval(substitute(~form)) } getResponseFormula <- function(object) { ## Return the response formula as a one sided formula form <- formula(object) if (!(inherits(form, "formula") && (length(form) == 3))) { stop("'form' must be a two-sided formula") } eval(parse(text = paste("~", deparse(form[[2]])))) } gsummary <- ## Summarize an object according to the levels of a grouping factor ## function(object, FUN = function(x) mean(x, na.rm = TRUE), omitGroupingFactor = FALSE, form = formula(object), level, groups = getGroups(object, form , level), invariantsOnly = FALSE, ...) { if (!inherits(object, "data.frame")) { stop("object must inherit from \"data.frame\"") } if (missing(groups)) { # formula and level are required if (!inherits(form, "formula")) { stop("'form' must be a formula") } if (is.null(grpForm <- getGroupsFormula(form, asList = TRUE))) { ## will use right hand side of form as groups formula grpForm <- splitFormula(asOneSidedFormula(form[[length(form)]])) } if (missing(level)) level <- length(grpForm) else if (length(level) != 1) { stop("only one level allowed in 'gsummary'") } } gunique <- unique(groups) firstInGroup <- match(gunique, groups) asFirst <- firstInGroup[match(groups, gunique)] value <- as.data.frame(object[firstInGroup, , drop = FALSE]) row.names(value) <- as.character(gunique) value <- value[as.character(sort(gunique)), , drop = FALSE] varying <- unlist(lapply(object, function(column, frst) { aux <- as.character(column) any(!identical(aux, aux[frst])) }, frst = asFirst)) if (any(varying) && (!invariantsOnly)) { # varying wanted Mode <- function(x) { aux <- table(x) names(aux)[match(max(aux), aux)] } if (is.function(FUN)) { # single function given FUN <- list(numeric = FUN, ordered = Mode, factor = Mode) } else { if (!(is.list(FUN) && all(sapply(FUN, is.function)))) stop("'FUN' can only be a function or a list of functions") auxFUN <- list(numeric = mean, ordered = Mode, factor = Mode) aux <- names(auxFUN)[is.na(match(names(auxFUN), names(FUN)))] if (length(aux) > 0) FUN[aux] <- auxFUN[aux] } for(nm in names(object)[varying]) { ## dClass <- data.class(object[[nm]]) ## The problem here is that dclass may find an irrelevant class, ## e.g. Hmisc's "labelled" dClass <- if(is.ordered(object[[nm]])) "ordered" else if(is.factor(object[[nm]])) "factor" else mode(object[[nm]]) if (dClass == "numeric") { value[[nm]] <- as.vector(tapply(object[[nm]], groups, FUN[["numeric"]],...)) } else { value[[nm]] <- as.vector(tapply(as.character(object[[nm]]), groups, FUN[[dClass]])) if (inherits(object[,nm], "ordered")) { value[[nm]] <- ordered(value[,nm], levels = levels(object[,nm]))[drop = TRUE] } else { value[[nm]] <- factor(value[,nm], levels = levels(object[,nm]))[drop = TRUE] } } } } else { # invariants only value <- value[, !varying, drop = FALSE] } if (omitGroupingFactor) { if (is.null(form)) { stop("cannot omit grouping factor without 'form'") } grpForm <- getGroupsFormula(form, asList = TRUE) if (missing(level)) level <- length(grpForm) grpNames <- names(grpForm)[level] whichKeep <- is.na(match(names(value), grpNames)) if (any(whichKeep)) { value <- value[ , whichKeep, drop = FALSE] } else { return(NULL); } } value } pooledSD <- function(object) { if (!inherits(object, "lmList")) { stop("object must inherit from class \"lmList\"") } aux <- apply(sapply(object, function(el) { if (is.null(el)) { c(0,0) } else { aux <- resid(el) c(sum(aux^2), length(aux) - length(coef(el))) } }), 1, sum) if (aux[2] == 0) { stop("no degrees of freedom for estimating std. dev.") } val <- sqrt(aux[1]/aux[2]) attr(val, "df") <- aux[2] val } splitFormula <- ## split, on the nm call, the rhs of a formula into a list of subformulas function(form, sep = "/") { if (inherits(form, "formula") || mode(form) == "call" && form[[1]] == as.name("~")) return(splitFormula(form[[length(form)]], sep = sep)) if (mode(form) == "call" && form[[1]] == as.name(sep)) return(do.call("c", lapply(as.list(form[-1]), splitFormula, sep = sep))) if (mode(form) == "(") return(splitFormula(form[[2]], sep = sep)) if (length(form) < 1) return(NULL) list(asOneSidedFormula(form)) } ##*## phenoModel - one-compartment open model with intravenous ##*## administration and first-order elimination for the Phenobarbital data phenoModel <- function(Subject, time, dose, lCl, lV) { .C(nlme_one_comp_first, as.integer(length(time)), resp = as.double(dose), as.double(cbind(Subject, time, dose, exp(lV), exp(lCl))), NAOK = TRUE)$resp } ##*## quinModel - one-compartment open model with first order ##*## absorption for the Quinidine data quinModel <- function(Subject, time, conc, dose, interval, lV, lKa, lCl) { .C(nlme_one_comp_open, as.integer(length(time)), resp = as.double(dose), as.double(cbind(Subject, time, conc, dose, interval, exp(lV), exp(lKa), exp(lCl - lV))), NAOK = TRUE)$resp } LDEsysMat <- function(pars, incidence) { tt <- incidence[, "To"] ff <- incidence[, "From"] pp <- pars[incidence[, "Par"]] n <- max(ff, tt) val <- array(double(n * n), c(n, n)) diag(val) <- - tapply(pp, ff, sum) val[incidence[tt > 0, c("To", "From"), drop = FALSE]] <- pp[tt > 0] val }