R version 2.4.0 beta (2006-09-25 r39510)
Copyright (C) 2006 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(mlmRev)
Loading required package: lme4
Loading required package: Matrix
Loading required package: lattice
> options(show.signif.stars = FALSE)
> cntr <- list()
> (fm01 <- lmer(langPOST ~ IQ.ver.cen+avg.IQ.ver.cen+(1|schoolNR), bdf))
Linear mixed-effects model fit by REML 
Formula: langPOST ~ IQ.ver.cen + avg.IQ.ver.cen + (1 | schoolNR) 
   Data: bdf 
   AIC   BIC logLik MLdeviance REMLdeviance
 15240 15263  -7616      15228        15232
Random effects:
 Groups   Name        Variance Std.Dev.
 schoolNR (Intercept)  7.8859  2.8082  
 Residual             42.1723  6.4940  
number of obs: 2287, groups: schoolNR, 131

Fixed effects:
               Estimate Std. Error t value
(Intercept)    40.74101    0.28660  142.16
IQ.ver.cen      2.41477    0.07168   33.69
avg.IQ.ver.cen  1.58916    0.31477    5.05

Correlation of Fixed Effects:
            (Intr) IQ.vr.
IQ.ver.cen   0.000       
avg.IQ.vr.c  0.077 -0.228
> (fm02 <- lmer(langPOST ~ IQ.ver.cen+avg.IQ.ver.cen+(IQ.ver.cen|schoolNR), bdf))
Linear mixed-effects model fit by REML 
Formula: langPOST ~ IQ.ver.cen + avg.IQ.ver.cen + (IQ.ver.cen | schoolNR) 
   Data: bdf 
   AIC   BIC logLik MLdeviance REMLdeviance
 15230 15264  -7609      15214        15218
Random effects:
 Groups   Name        Variance Std.Dev. Corr   
 schoolNR (Intercept)  8.07566 2.84177         
          IQ.ver.cen   0.20801 0.45608  -0.642 
 Residual             41.34967 6.43037         
number of obs: 2287, groups: schoolNR, 131

Fixed effects:
               Estimate Std. Error t value
(Intercept)    40.74958    0.28808  141.45
IQ.ver.cen      2.45983    0.08364   29.41
avg.IQ.ver.cen  1.40893    0.32374    4.35

Correlation of Fixed Effects:
            (Intr) IQ.vr.
IQ.ver.cen  -0.274       
avg.IQ.vr.c  0.029 -0.213
> (fm03 <- lmer(math ~ year+(1|childid)+(1|schoolid), egsingle))
Linear mixed-effects model fit by REML 
Formula: math ~ year + (1 | childid) + (1 | schoolid) 
   Data: egsingle 
   AIC   BIC logLik MLdeviance REMLdeviance
 16767 16795  -8380      16747        16759
Random effects:
 Groups   Name        Variance Std.Dev.
 childid  (Intercept) 0.66992  0.81849 
 schoolid (Intercept) 0.18693  0.43235 
 Residual             0.34700  0.58907 
number of obs: 7230, groups: childid, 1721; schoolid, 60

Fixed effects:
             Estimate Std. Error t value
(Intercept) -0.780482   0.061088  -12.78
year         0.746123   0.005396  138.26

Correlation of Fixed Effects:
     (Intr)
year -0.031
> (fm04 <- lmer(math ~ year+(1|childid)+(year|schoolid), egsingle))
Linear mixed-effects model fit by REML 
Formula: math ~ year + (1 | childid) + (year | schoolid) 
   Data: egsingle 
   AIC   BIC logLik MLdeviance REMLdeviance
 16494 16536  -8241      16472        16482
Random effects:
 Groups   Name        Variance Std.Dev. Corr  
 childid  (Intercept) 0.672304 0.81994        
 schoolid (Intercept) 0.166812 0.40843        
          year        0.011584 0.10763  0.443 
 Residual             0.324516 0.56966        
number of obs: 7230, groups: childid, 1721; schoolid, 60

Fixed effects:
            Estimate Std. Error t value
(Intercept) -0.77709    0.05823  -13.34
year         0.76296    0.01533   49.76

Correlation of Fixed Effects:
     (Intr)
year 0.358 
> (fm05 <- lmer(normexam ~ standLRT + sex + schgend + (1|school), Exam))
Linear mixed-effects model fit by REML 
Formula: normexam ~ standLRT + sex + schgend + (1 | school) 
   Data: Exam 
  AIC  BIC logLik MLdeviance REMLdeviance
 9360 9398  -4674       9326         9348
Random effects:
 Groups   Name        Variance Std.Dev.
 school   (Intercept) 0.085829 0.29297 
 Residual             0.562534 0.75002 
number of obs: 4059, groups: school, 65

Fixed effects:
              Estimate Std. Error t value
(Intercept)  -0.001049   0.055569   -0.02
standLRT      0.559754   0.012450   44.96
sexM         -0.167392   0.034100   -4.91
schgendboys   0.177691   0.113475    1.57
schgendgirls  0.158997   0.089403    1.78

Correlation of Fixed Effects:
            (Intr) stnLRT sexM   schgndb
standLRT    -0.014                      
sexM        -0.316  0.061               
schgendboys -0.395 -0.003 -0.145        
schgendgrls -0.622  0.009  0.197  0.245 
> (fm06 <- lmer(score ~ gcsecnt + (1|school) + (1|lea), Chem97))
Linear mixed-effects model fit by REML 
Formula: score ~ gcsecnt + (1 | school) + (1 | lea) 
   Data: Chem97 
    AIC    BIC logLik MLdeviance REMLdeviance
 141705 141738 -70848     141686       141697
Random effects:
 Groups   Name        Variance Std.Dev.
 school   (Intercept) 1.166197 1.07991 
 lea      (Intercept) 0.014766 0.12151 
 Residual             5.154203 2.27029 
number of obs: 31022, groups: school, 2410; lea, 131

Fixed effects:
            Estimate Std. Error t value
(Intercept)  5.63545    0.03123   180.4
gcsecnt      2.47256    0.01690   146.3

Correlation of Fixed Effects:
        (Intr)
gcsecnt 0.058 
> (fm07 <- lmer(height ~ age + I(age^2) + I(age^3) + I(age^4) + (age + I(age^2)|Subject),
+                  Oxboys))
Linear mixed-effects model fit by REML 
Formula: height ~ age + I(age^2) + I(age^3) + I(age^4) + (age + I(age^2) |      Subject) 
   Data: Oxboys 
   AIC   BIC logLik MLdeviance REMLdeviance
 669.5 707.5 -323.7      644.7        647.5
Random effects:
 Groups   Name        Variance Std.Dev. Corr        
 Subject  (Intercept) 62.74004 7.9209               
          age          2.81669 1.6783   0.607       
          I(age^2)     0.38576 0.6211   0.607 1.000 
 Residual              0.28112 0.5302               
number of obs: 234, groups: Subject, 26

Fixed effects:
            Estimate Std. Error t value
(Intercept) 149.0185     1.5547   95.85
age           6.1754     0.3609   17.11
I(age^2)      1.1310     0.3755    3.01
I(age^3)      0.4523     0.1847    2.45
I(age^4)     -0.3796     0.3414   -1.11

Correlation of Fixed Effects:
         (Intr) age    I(g^2) I(g^3)
age       0.554                     
I(age^2)  0.169  0.276              
I(age^3) -0.001 -0.382  0.027       
I(age^4)  0.024  0.018 -0.912 -0.021
Warning message:
nlminb returned message false convergence (8)
 in: `LMEoptimize<-`(`*tmp*`, value = list(maxIter = 200, tolerance = 1.49011611938477e-08,  
> (fm08 <- lmer(height ~ poly(age,4) + (age + I(age^2)|Subject), Oxboys))
Linear mixed-effects model fit by REML 
Formula: height ~ poly(age, 4) + (age + I(age^2) | Subject) 
   Data: Oxboys 
   AIC   BIC logLik MLdeviance REMLdeviance
 658.3 696.3 -318.2      644.5        636.3
Random effects:
 Groups   Name        Variance Std.Dev. Corr        
 Subject  (Intercept) 62.17477 7.88510              
          age          2.72854 1.65183  0.609       
          I(age^2)     0.35817 0.59847  0.609 1.000 
 Residual              0.28269 0.53169              
number of obs: 234, groups: Subject, 26

Fixed effects:
              Estimate Std. Error t value
(Intercept)   149.5197     1.5818   94.52
poly(age, 4)1  64.5424     3.2613   19.79
poly(age, 4)2   4.2034     0.8508    4.94
poly(age, 4)3   1.2862     0.5317    2.42
poly(age, 4)4  -0.5897     0.5317   -1.11

Correlation of Fixed Effects:
            (Intr) p(,4)1 p(,4)2 p(,4)3
poly(ag,4)1 0.623                      
poly(ag,4)2 0.493  0.770               
poly(ag,4)3 0.000  0.000  0.000        
poly(ag,4)4 0.000  0.000  0.000  0.000 
Warning message:
nlminb returned message function evaluation limit reached without convergence (9)
 in: `LMEoptimize<-`(`*tmp*`, value = list(maxIter = 200, tolerance = 1.49011611938477e-08,  
> (fm09 <- lmer(attain ~ verbal * sex+(1|primary)+(1|second), ScotsSec))
Linear mixed-effects model fit by REML 
Formula: attain ~ verbal * sex + (1 | primary) + (1 | second) 
   Data: ScotsSec 
   AIC   BIC logLik MLdeviance REMLdeviance
 14880 14917  -7434      14843        14868
Random effects:
 Groups   Name        Variance Std.Dev.
 primary  (Intercept) 0.275457 0.52484 
 second   (Intercept) 0.014747 0.12144 
 Residual             4.253113 2.06231 
number of obs: 3435, groups: primary, 148; second, 19

Fixed effects:
            Estimate Std. Error t value
(Intercept) 5.914713   0.076795   77.02
verbal      0.158356   0.003787   41.81
sexF        0.121553   0.072413    1.68
verbal:sexF 0.002593   0.005388    0.48

Correlation of Fixed Effects:
            (Intr) verbal sexF  
verbal       0.177              
sexF        -0.482 -0.178       
verbal:sexF -0.122 -0.680  0.161
> (fm10 <- lmer(attain ~ verbal + sex+(1|primary)+(sex|second), ScotsSec))
Linear mixed-effects model fit by REML 
Formula: attain ~ verbal + sex + (1 | primary) + (sex | second) 
   Data: ScotsSec 
   AIC   BIC logLik MLdeviance REMLdeviance
 14862 14905  -7424      14832        14848
Random effects:
 Groups   Name        Variance Std.Dev. Corr   
 primary  (Intercept) 0.268596 0.51826         
 second   (Intercept) 0.046389 0.21538         
          sexF        0.145830 0.38188  -0.798 
 Residual             4.218513 2.05390         
number of obs: 3435, groups: primary, 148; second, 19

Fixed effects:
            Estimate Std. Error t value
(Intercept) 5.927407   0.086603   68.44
verbal      0.159591   0.002771   57.59
sexF        0.098448   0.114517    0.86

Correlation of Fixed Effects:
       (Intr) verbal
verbal  0.115       
sexF   -0.624 -0.060
>