## (c) Simon N. Wood (2013-2015) mvn model extended family. ## Released under GPL2 ... lpi.expand <- function(X,trailing=TRUE) { ## takes a model matrix X, with "lpi" attribute, and produces ## full redundant version in which each column block is the full ## model matrix for one linear predictor, which may involve ## repeating columns between blocks. ## See mvn family (ll) for prototypic application lpi <- attr(X,"lpi") if (!attr(lpi,"overlap")) return(X) ## nothing to do ip <- unlist(lpi) if (trailing&&max(ip)lip) nt <- nrow(x)-lip else if (ncol(x)>lip) nt <- ncol(x) - lip } else if (length(x)>lip) nt <- length(x) - lip if (nt>0) { ## there is a trailing block - index it in lpi lpi[[length(lpi)+1]] <- 1:nt + max(ip) ip <- unlist(lpi) } } p <- max(ip) ## dimension of result if (is.matrix(x)) { if (type=="c"||type=="rc") { ## column contraction k <- 0 z <- matrix(0,nrow(x),p) for (i in 1:length(lpi)) { ii <- 1:length(lpi[[i]]) + k k <- k + length(ii) z[,lpi[[i]]] <- z[,lpi[[i]]] + x[,ii] } if (type=="rc") x <- z } if (type=="r"||type=="rc") { ## row contraction z <- matrix(0,p,ncol(x)) k <- 0 for (i in 1:length(lpi)) { ii <- 1:length(lpi[[i]]) + k k <- k + length(ii) z[lpi[[i]],] <- z[lpi[[i]],] + x[ii,] } } } else { ## vector z <- rep(0,p);k <- 0 for (i in 1:length(lpi)) { ii <- 1:length(lpi[[i]]) + k k <- k + length(ii) z[lpi[[i]]] <- z[lpi[[i]]] + x[ii] } } z } ## lpi.contract mvn <- function(d=2) { ## Extended family object for multivariate normal additive model. if (d<2) stop("mvn requires 2 or more dimensional data") stats <- list() for (i in 1:d) { stats[[i]] <- make.link("identity") } ##env <- new.env(parent = .GlobalEnv) validmu <- function(mu) all(is.finite(mu)) ## initialization has to add in the extra parameters of ## the cov matrix... preinitialize <- expression({ ## code to evaluate in estimate.gam... ## extends model matrix with dummy columns and ## finds initial coefficients ydim <- ncol(G$y) ## dimension of response nbeta <- ncol(G$X) ntheta <- ydim*(ydim+1)/2 ## number of cov matrix factor params lpi <- attr(G$X,"lpi") #offs <- attr(G$X,"offset") XX <- crossprod(G$X) G$X <- cbind(G$X,matrix(0,nrow(G$X),ntheta)) ## add dummy columns to G$X #G$cmX <- c(G$cmX,rep(0,ntheta)) ## and corresponding column means G$term.names <- c(G$term.names,paste("R",1:ntheta,sep=".")) attr(G$X,"lpi") <- lpi #offs -> attr(G$X,"offset") attr(G$X,"XX") <- XX ## pad out sqrt of balanced penalty matrix to account for extra params attr(G$Sl,"E") <- cbind(attr(G$Sl,"E"),matrix(0,nbeta,ntheta)) G$family$data <- list(ydim = ydim,nbeta=nbeta) G$family$ibeta = rep(0,ncol(G$X)) ## now get initial parameters and store in family... for (k in 1:ydim) { sin <- G$off %in% lpi[[k]] #Sk <- G$S[sin] um <- magic(G$y[,k],G$X[,lpi[[k]]],rep(-1,sum(sin)),G$S[sin], match(G$off[sin],lpi[[k]]), ## turn G$off global indices into indices for this predictor nt=control$nthreads) G$family$ibeta[lpi[[k]]] <- um$b G$family$ibeta[nbeta+1] <- -.5*log(um$scale) ## initial log root precision nbeta <- nbeta + ydim - k + 1 } }) postproc <- expression({ ## code to evaluate in estimate.gam, to do with estimated factor of ## precision matrix, etc... ydim <- G$family$data$ydim R <- matrix(0,ydim,ydim) ind <- G$family$data$nbeta + 1:(ydim*(ydim+1)/2); theta <- object$coefficients[ind] k <- 1;for (i in 1:ydim) for (j in i:ydim) { if (i==j) R[i,j] <- exp(theta[k]) else R[i,j] <- theta[k] k <- k + 1 } object$family$data <- list(R=R) rsd <- R%*%t(object$y-object$fitted.values) object$deviance <- sum(rsd^2) rsd <- R%*%(t(object$y)-colMeans(object$y)) object$null.deviance <- sum(rsd^2) }) initialize <- expression({ ## called in gam.fit5 and initial.spg n <- rep(1, nobs) if (is.null(start)) start <- family$ibeta ## need to re-parameterize XX is non-standard if (exists("rp",inherits=FALSE)&&length(rp$rp)>0) attr(x,"XX") <- Sl.repara(rp$rp,t(Sl.repara(rp$rp,attr(x,"XX")))) }) residuals <- function(object,type=c("response","deviance")) { type <- match.arg(type) res <- object$y - object$fitted.values if (type=="deviance") res <- res%*%t(object$family$data$R) res } ## residuals ##rd <- qf <- NULL ## these functions currently undefined for ll <- function(y,X,coef,wt,family,offset=NULL,deriv=0,d1b=NULL,d2b=NULL,Hp=NULL,rank=0,fh=NULL,D=NULL) { ## function defining the Multivariate Normal model log lik. ## Calls C code "mvn_ll" ## deriv codes: 0 - evaluate the log likelihood ## 1 - evaluate the grad and Hessian, H, of log lik w.r.t. coefs (beta) ## 2/3 - evaluate d1H =dH/drho given db/drho in d1b ## (2 is diagonal only - not implemented efficiently) ## 4 - given d1b and d2b evaluate trHid2H= tr(Hp^{-1}d2H/drhodrho') (not implemented) ## Hp is the preconditioned penalized hessian of the log lik ## which is of rank 'rank'. ## fh is a factorization of Hp - either its eigen decomposition ## or its Choleski factor ## D is the diagonal pre-conditioning matrix used to obtain Hp ## if Hr is the raw Hp then Hp = D*t(D*Hr) if (!is.null(offset)) { for (i in 1:length(offset)) if (sum(offset[[i]]!=0)) stop("mvn does not yet handle offsets") } lpi <- attr(X,"lpi") ## lpi[[k]] is index of model matrix columns for dim k overlap <- attr(lpi,"overlap") ## do dimensions share terms? drop <- attr(X,"drop") if (!is.null(drop)) { ## the optimizer has dropped some parameters ## it will have adjusted lpi automatically, but XX is mvn specific attr(X,"XX") <- attr(X,"XX")[-drop,-drop] } m <- length(lpi) ## number of dimensions of MVN if (overlap) { ## linear predictors share terms - expand to redundant representation ip <- unlist(lpi) XX <- attr(X,"XX")[ip,ip] X <- lpi.expand(X) attr(X,"XX") <- XX;rm(XX) lpi0 <- lpi ## need to save this for contraction of results lpi <- attr(X,"lpi") ## this indexes the cols of each l.p in the expanded X ## need to expand coef beta, leaving m*(m+1)/2 final coefs of R at end ind <- (max(ip)+1):length(coef) if (length(ind)!=m*(m+1)/2) stop("mvn dimension error") coef <- c(coef[ip],coef[ind]) ## do same for derivatives of coef wrt log smoothing params... if (!is.null(d1b)) d1b <- rbind(d1b[ip,],d1b[ind,]) } else ind <- NULL lpstart <- rep(0,m) for (i in 1:(m-1)) lpstart[i] <- lpi[[i+1]][1] lpstart[m] <- lpi[[m]][length(lpi[[m]])]+1 nb <- length(coef) ## total number of parameters if (deriv<2) { nsp = 0;d1b <- dH <- 0 } else { nsp = ncol(d1b) dH = rep(0,nsp*nb*nb) } #cat("\nderiv=",deriv," lpstart=",lpstart," dim(y) = ",dim(y), # "\ndim(XX)=",dim(attr(X,"XX"))," m=",m," nsp=",nsp,"\n") oo <- .C("mvn_ll",y=as.double(t(y)),X=as.double(X),XX=as.double(attr(X,"XX")), beta=as.double(coef),n=as.integer(nrow(X)), lpi=as.integer(lpstart-1),m=as.integer(m),ll=as.double(0),lb=as.double(coef*0), lbb=as.double(rep(0,nb*nb)), dbeta = as.double(d1b), dH = as.double(dH), deriv = as.integer(nsp>0),nsp = as.integer(nsp),nt=as.integer(1),PACKAGE="mgcv") lb <- oo$lb;lbb <- matrix(oo$lbb,nb,nb) if (overlap) { ## need to apply lpi contraction lb <- lpi.contract(lb,lpi0) ## lpi.contract will automatically carry across the R coef related stuff lbb <- lpi.contract(lbb,lpi0) } if (nsp==0) d1H <- NULL else if (deriv==2) { d1H <- matrix(0,nb,nsp) for (i in 1:nsp) { dH <- matrix(oo$dH[ind],nb,nb) if (overlap) dH <- lpi.contract(dH,lpi0) d1H[,i] <- diag(dH) ind <- ind + nb*nb } } else { ## deriv==3 d1H <- list();ind <- 1:(nb*nb) for (i in 1:nsp) { dH <- matrix(oo$dH[ind],nb,nb) if (overlap) dH <- lpi.contract(dH,lpi0) d1H[[i]] <- dH ind <- ind + nb*nb } } list(l=oo$ll,lb=lb,lbb=lbb,d1H=d1H) } ## ll # environment(dev.resids) <- environment(aic) <- environment(getTheta) <- # environment(rd)<- environment(qf)<- environment(variance) <- environment(putTheta) ##environment(aic) <- ##environment(ll) <- env structure(list(family = "Multivariate normal", ## link = linktemp, linkfun = stats$linkfun, linkinv = stats$linkinv, ll=ll,nlp=d, initialize = initialize,preinitialize=preinitialize,postproc=postproc, residuals=residuals, validmu = validmu, ## valideta = stats$valideta, ## rd=rd,qf=qf, linfo = stats, ## link information list d2link=1,d3link=1,d4link=1, ## signals to fix.family.link that all done ls=1, ## signal ls not needed available.derivs = 1 ## signal only first derivatives available... ), class = c("general.family","extended.family","family")) } ## mvn