## (c) Simon Wood 2014. Released under GPL2. ## jagam code (Just Another Gibbs Additive Model) ## Code offering JAGS/BUGS support for mgcv. ## In particular autogenerates the code and data to fit an mgcv ## style GAM in JAGS, and re-packages the simulation output ## in a form suitable for plotting and prediction. ## Idea is that the code would be modified to add the sort ## of random effects structure most appropriately handled in JAGS. write.jagslp <- function(resp,family,file,use.weights,offset=FALSE) { ## write the JAGS code for the linear predictor ## and response distribution. iltab <- ## table of inverse link functions c("eta[i]","exp(eta[i])","ilogit(eta[i])","phi(eta[i])","1/eta[i]","eta[i]^2") names(iltab) <- c("identity","log","logit","probit","inverse","sqrt") if (!family$link%in%names(iltab)) stop("sorry link not yet handled") ## code linear predictor and expected response... if (family$link=="identity") { if (offset) cat(" mu <- X %*% b + offset ## expected response\n",file=file,append=TRUE) else cat(" mu <- X %*% b ## expected response\n",file=file,append=TRUE) } else { if (offset) cat(" eta <- X %*% b + offset ## linear predictor\n",file=file,append=TRUE) else cat(" eta <- X %*% b ## linear predictor\n",file=file,append=TRUE) cat(" for (i in 1:n) { mu[i] <- ",iltab[family$link],"} ## expected response\n",file=file,append=TRUE) } ## code the response given mu and any scale parameter prior... #scale <- TRUE ## is scale parameter free? cat(" for (i in 1:n) { ",file=file,append=TRUE) if (family$family=="gaussian") { if (use.weights) cat(resp,"[i] ~ dnorm(mu[i],tau*w[i]) } ## response \n",sep="",file=file,append=TRUE) else cat(resp,"[i] ~ dnorm(mu[i],tau) } ## response \n",sep="",file=file,append=TRUE) cat(" scale <- 1/tau ## convert tau to standard GLM scale\n",file=file,append=TRUE) cat(" tau ~ dgamma(.05,.005) ## precision parameter prior \n",file=file,append=TRUE) } else if (family$family=="poisson") { # scale <- FALSE cat(resp,"[i] ~ dpois(mu[i]) } ## response \n",sep="",file=file,append=TRUE) if (use.weights) warning("weights ignored") use.weights <- FALSE } else if (family$family=="binomial") { # scale <- FALSE cat(resp,"[i] ~ dbin(mu[i],w[i]) } ## response \n",sep="",file=file,append=TRUE) use.weights <- TRUE } else if (family$family=="Gamma") { if (use.weights) cat(resp,"[i] ~ dgamma(r*w[i],r*w[i]/mu[i]) } ## response \n",sep="",file=file,append=TRUE) else cat(resp,"[i] ~ dgamma(r,r/mu[i]) } ## response \n",sep="",file=file,append=TRUE) cat(" r ~ dgamma(.05,.005) ## scale parameter prior \n",file=file,append=TRUE) cat(" scale <- 1/r ## convert r to standard GLM scale\n",file=file,append=TRUE) } else stop("family not implemented yet") use.weights } ## write.jagslp jini <- function(G,lambda) { ## get initial coefficients to initialize JAGS, otherwise ## initialization is hit and miss. y <- G$y; nobs <- length(y); p <- ncol(G$X) family <- G$family weights <- G$w start <- mustart <- etastart <- NULL ## ignore codetools warning - needed for eval eval(G$family$initialize) w <- as.numeric(G$w * family$mu.eta(family$linkfun(mustart))^2/family$variance(mustart)) w <- sqrt(w) z <- c(w*family$linkfun(mustart),rep(0,p)) ## residual is zero, so eta is all there is! X <- rbind(w*G$X,matrix(0,p,p)) ## now append square roots of penalties uoff <- unique(G$off) for (i in 1:length(uoff)) { jj <- which(G$off%in%uoff[i]) S <- G$S[[jj[1]]]*lambda[[jj[1]]] m <- length(jj) if (m>1) for (j in jj) S <- S + G$S[[j]]*lambda[j] S <- t(mroot(S)) jj <- nrow(S) X[(nobs+1):(nobs+jj),uoff[i]:(uoff[i]+ncol(S)-1)] <- S nobs <- nobs + jj } ## we need some idea of initial coeffs and some idea of ## associated standard error... qrx <- qr(X,LAPACK=TRUE) rp <- qrx$pivot;rp[rp] <- 1:ncol(X) Ri <- backsolve(qr.R(qrx),diag(1,nrow=ncol(X)))[rp,] beta <- qr.coef(qrx,z) se <- sqrt(rowSums(Ri^2))*sqrt(sum((z-X%*%beta)^2)/nrow(X)) list(beta=beta,se=se) } ## jini jagam <- function(formula,family=gaussian,data=list(),file,weights=NULL,na.action, offset=NULL,knots=NULL,sp=NULL,drop.unused.levels=TRUE,control=gam.control(),centred=TRUE, sp.prior = "gamma",diagonalize=FALSE) { ## rho contains log smoothing params and b the model coefficients, in JAGS ## diagonalize==TRUE actually seems to be faster for high dimensional terms ## in the Gaussian setting (Conjugate updates better than MH), otherwise ## diagonalize==FALSE faster as block MH is highly advantageous ## WARNING: centred=FALSE is usually a very bad idea!! if (is.null(file)) stop("jagam requires a file for the JAGS model specification") cat("model {\n",file=file) ## start the model specification if (!(sp.prior %in% c("gamma","log.uniform"))) { warning("smoothing parameter prior choise not recognised, reset to gamma") } ## takes GAM formula and data and produces JAGS model and corresponding ## data list... if (is.character(family)) family <- eval(parse(text = family)) if (is.function(family)) family <- family() if (is.null(family$family)) stop("family not recognized") gp <- interpret.gam(formula) # interpret the formula cl <- match.call() # call needed in gam object for update to work mf <- match.call(expand.dots=FALSE) mf$formula <- gp$fake.formula mf$family <- mf$knots <- mf$sp <- mf$file <- mf$control <- mf$centred <- mf$sp.prior <- mf$diagonalize <- NULL mf$drop.unused.levels <- drop.unused.levels mf[[1]] <- quote(stats::model.frame) ##as.name("model.frame") pmf <- mf pmf$formula <- gp$pf pmf <- eval(pmf, parent.frame()) # pmf contains all data for parametric part pterms <- attr(pmf,"terms") ## pmf only used for this rm(pmf) mf <- eval(mf, parent.frame()) # the model frame now contains all the data if (nrow(mf)<2) stop("Not enough (non-NA) data to do anything meaningful") terms <- attr(mf,"terms") ## summarize the *raw* input variables ## note can't use get_all_vars here -- buggy with matrices vars <- all.vars(gp$fake.formula[-2]) ## drop response here inp <- parse(text = paste("list(", paste(vars, collapse = ","),")")) ## allow a bit of extra flexibility in what `data' is allowed to be (as model.frame actually does) if (!is.list(data)&&!is.data.frame(data)) data <- as.data.frame(data) dl <- eval(inp, data, parent.frame()) if (!control$keepData) { rm(data)} ## save space names(dl) <- vars ## list of all variables needed var.summary <- variable.summary(gp$pf,dl,nrow(mf)) ## summarize the input data rm(dl) G <- gam.setup(gp,pterms=pterms, data=mf,knots=knots,sp=sp, H=NULL,absorb.cons=centred,sparse.cons=FALSE,select=TRUE, idLinksBases=TRUE,scale.penalty=control$scalePenalty, diagonal.penalty=diagonalize) G$model <- mf;G$terms <- terms;G$family <- family;G$call <- cl G$var.summary <- var.summary ## write JAGS code producing linear predictor and linking linear predictor to ## response.... use.weights <- if (is.null(weights)) FALSE else TRUE use.weights <- write.jagslp("y",family,file,use.weights,!is.null(G$offset)) if (is.null(weights)&&use.weights) weights <- rep(1,nrow(G$X)) ## start the JAGS data list... jags.stuff <- list(y=G$y,n=length(G$y),X=G$X) if (!is.null(G$offset)) jags.stuff$offset <- G$offset if (use.weights) jags.stuff$w <- weights if (family$family == "binomial") jags.stuff$y <- G$y*weights ## JAGS not expecting observed prob!! ## get initial values, for use by JAGS, and to guess suitable values for ## uninformative priors... lambda <- initial.spg(G$X,G$y,G$w,family,G$S,G$rank,G$off,offset=G$offset,L=G$L) ## initial sp values jags.ini <- list() lam <- if (is.null(G$L)) lambda else G$L%*%lambda jin <- jini(G,lam) jags.ini$b <- jin$beta prior.tau <- signif(0.01/(abs(jin$beta) + jin$se)^2,2) ## set the fixed effect priors... if (G$nsdf>0) { ptau <- min(prior.tau[1:G$nsdf]) cat(" ## Parametric effect priors CHECK tau=1/",signif(1/sqrt(ptau),2),"^2 is appropriate!\n",file=file,append=TRUE,sep="") cat(" for (i in 1:",G$nsdf,") { b[i] ~ dnorm(0,",ptau,") }\n",file=file,append=TRUE,sep="") } ## Work through smooths. ## In JAGS terms the penalties should simply define priors. ## Any unpenalized term should be given a diffuse prior. ## For diagonalized terms these should be written directly into the code ## and there is nothing to pass to JAGS. ## For overlapping multi term penalties, a null space penalty needs to ## be added and the components of the penalty have to be passed into ## JAGS in the argument list: cbinding the components into one matrix seems sensible. ## Smoothing parameters should be in a single vector in the code indexed by ## number. n.sp <- 0 ## count the smoothing parameters.... for (i in 1:length(G$smooth)) { ## Are penalties seperable... seperable <- FALSE M <- length(G$smooth[[i]]$S) p <- G$smooth[[i]]$last.para - G$smooth[[i]]$first.para + 1 ## number of params if (M<=1) seperable <- TRUE else { overlap <- rowSums(G$smooth[[i]]$S[[1]]) for (j in 2:M) overlap <- overlap & rowSums(G$smooth[[i]]$S[[j]]) if (!sum(overlap)) seperable <- TRUE } if (seperable) { ## double check that they are diagonal if (M>0) for (j in 1:M) { if (max(abs(G$smooth[[i]]$S[[j]] - diag(diag(G$smooth[[i]]$S[[j]]),nrow=p)))>0) seperable <- FALSE } } cat(" ## prior for ",G$smooth[[i]]$label,"... \n",file=file,append=TRUE,sep="") if (seperable) { b0 <- G$smooth[[i]]$first.para if (M==0) { cat(" ## Note fixed vague prior, CHECK tau = 1/",signif(1/sqrt(ptau),2),"^2...\n",file=file,append=TRUE,sep="") b1 <- G$smooth[[i]]$last.para ptau <- min(prior.tau[b0:b1]) cat(" for (i in ",b0,":",b1,") { b[i] ~ dnorm(0,",ptau,") }\n",file=file,append=TRUE,sep="") } else for (j in 1:M) { D <- diag(G$smooth[[i]]$S[[j]]) > 0 b1 <- sum(as.numeric(D)) + b0 - 1 n.sp <- n.sp + 1 cat(" for (i in ",b0,":",b1,") { b[i] ~ dnorm(0, lambda[",n.sp,"]) }\n",file=file,append=TRUE,sep="") b0 <- b1 + 1 } } else { ## inseperable - requires the penalty matrices to be supplied to JAGS... b0 <- G$smooth[[i]]$first.para; b1 <- G$smooth[[i]]$last.para Kname <- paste("K",i,sep="") ## total penalty matrix in JAGS Sname <- paste("S",i,sep="") ## components of total penalty in R & JAGS cat(" ",Kname," <- ",Sname,"[1:",p,",1:",p,"] * lambda[",n.sp+1,"] ", file=file,append=TRUE,sep="") if (M>1) { ## code to form total precision matrix... for (j in 2:M) cat(" + ",Sname,"[1:",p,",",(j-1)*p+1,":",j*p,"] * lambda[",n.sp+j,"]", file=file,append=TRUE,sep="") } cat("\n b[",b0,":",b1,"] ~ dmnorm(zero[",b0,":",b1,"],",Kname,") \n" ,file=file,append=TRUE,sep="") n.sp <- n.sp + M Sc <- G$smooth[[i]]$S[[1]] if (M>1) for (j in 2:M) Sc <- cbind(Sc,G$smooth[[i]]$S[[j]]) jags.stuff[[Sname]] <- Sc jags.stuff$zero <- rep(0,ncol(G$X)) } } ## smoothing penalties finished ## Write the smoothing parameter prior code, using L if it exists. cat(" ## smoothing parameter priors CHECK...\n",file=file,append=TRUE,sep="") if (is.null(G$L)) { if (sp.prior=="log.uniform") { cat(" for (i in 1:",n.sp,") {\n",file=file,append=TRUE,sep="") cat(" rho[i] ~ dunif(-12,12)\n",file=file,append=TRUE,sep="") cat(" lambda[i] <- exp(rho[i])\n",file=file,append=TRUE,sep="") cat(" }\n",file=file,append=TRUE,sep="") jags.ini$rho <- log(lambda) } else { ## gamma priors cat(" for (i in 1:",n.sp,") {\n",file=file,append=TRUE,sep="") cat(" lambda[i] ~ dgamma(.05,.005)\n",file=file,append=TRUE,sep="") cat(" rho[i] <- log(lambda[i])\n",file=file,append=TRUE,sep="") cat(" }\n",file=file,append=TRUE,sep="") jags.ini$lambda <- lambda } } else { jags.stuff$L <- G$L rho.lo <- FALSE if (any(G$lsp0!=0)) { jags.stuff$rho.lo <- G$lsp0 rho.lo <- TRUE } nr <- ncol(G$L) if (sp.prior=="log.uniform") { cat(" for (i in 1:",nr,") { rho0[i] ~ dunif(-12,12) }\n",file=file,append=TRUE,sep="") if (rho.lo) cat(" rho <- rho.lo + L %*% rho0\n",file=file,append=TRUE,sep="") else cat(" rho <- L %*% rho0\n",file=file,append=TRUE,sep="") cat(" for (i in 1:",n.sp,") { lambda[i] <- exp(rho[i]) }\n",file=file,append=TRUE,sep="") jags.ini$rho0 <- log(lambda) } else { ## gamma prior cat(" for (i in 1:",nr,") {\n",file=file,append=TRUE,sep="") cat(" lambda0[i] ~ dgamma(.05,.005)\n",file=file,append=TRUE,sep="") cat(" rho0[i] <- log(lambda0[i])\n",file=file,append=TRUE,sep="") cat(" }\n",file=file,append=TRUE,sep="") if (rho.lo) cat(" rho <- rho.lo + L %*% rho0\n",file=file,append=TRUE,sep="") else cat(" rho <- L %*% rho0\n",file=file,append=TRUE,sep="") cat(" for (i in 1:",n.sp,") { lambda[i] <- exp(rho[i]) }\n",file=file,append=TRUE,sep="") jags.ini$lambda0 <- lambda } } cat("}",file=file,append=TRUE) G$formula=formula G$rank=ncol(G$X) ## to Gibbs sample we force full rank! list(pregam=G,jags.data=jags.stuff,jags.ini=jags.ini) } ## jagam sim2jam <- function(sam,pregam,edf.type=2,burnin=0) { ## takes jags simulation output with field, b, containing model coefficients ## and a pregam object from jagam, and attempts to create a fake gam object suitable ## for plotting. This is given a class "jam" since only a limited range of gam ## methods are appropriate for such models. Ideally... ## vcov, print, plot, predict, model.matrix, ... if (is.null(sam$b)) stop("coefficient simulation data is missing") if (burnin>0) { nc <- dim(sam$b)[2] ## chain length if (burnin >= nc*.9) { warning("burnin too large, reset") burnin <- min(nc-1,floor(nc * .9)) } ind <- (burnin+1):nc sam$b <- sam$b[,ind,] if (!is.null(sam$mu)) sam$mu <- sam$mu[,ind,] if (!is.null(sam$rho)) sam$rho <- sam$rho[,ind,] if (!is.null(sam$scale)) sam$scale <- sam$scale[,ind,] } pregam$Vp <- cov(t(sam$b[,,1])) pregam$coefficients <- rowMeans(sam$b[,,1]) pregam$sig2 <- if (is.null(sam$scale)) 1 else mean(sam$scale) n.chain <- dim(sam$b)[3] if (n.chain>1) { for (i in 2:n.chain) { pregam$Vp <- pregam$Vp + cov(t(sam$b[,,i])) pregam$coefficients <- pregam$coefficients + rowMeans(sam$b[,,i]) } pregam$Vp <- pregam$Vp/n.chain pregam$coefficients <- pregam$coefficients/n.chain } ## NOTE: 3 edf versions... ## 0. diag((X'X+S)^{-1}X'X) ## 1. diag((X'WX+S)^-1X'WX) ## 2. diag(VbX'WX)/scale Vb by simulation. mu used for W may also be by sim. if (edf.type<2&&is.null(sam$rho)) { edf.type <- 2 warning("rho missing from simulation data edf.type reset to 2") } if (edf.type > 0) { ## use X'WX not X'X if (is.null(sam$mu)) { eta <- pregam$X %*% pregam$coefficients mu <- pregam$family$linkinv(eta) } else { mu <- rowMeans(sam$mu) eta <- pregam$family$linkfun(mu) } w <- as.numeric(pregam$w * pregam$family$mu.eta(eta)^2/pregam$family$variance(mu)) XWX <- t(pregam$X) %*% (w*pregam$X) } else XWX <- t(pregam$X) %*% (pregam$X) if (edf.type < 2) { ## tr((X'WX + S)^{-1}X'WX rho <- rowMeans(sam$rho);lambda <- exp(rho) XWXS <- XWX for (i in 1:length(lambda)) { ind <- pregam$off[i]:(pregam$off[i]+ncol(pregam$S[[i]])-1) XWXS[ind,ind] <- XWXS[ind,ind] + pregam$S[[i]] * lambda[i] } pregam$edf <- diag(solve(XWXS,XWX)) } else pregam$edf <- rowSums(pregam$Vp*t(XWX))/pregam$sig2 ## tr(Vb%*%XWX)/scale class(pregam) <- "jam" pregam } ## sim2jam ## method functions. Simple wrappers for gam methods ## idea is to limit options to those generally computable... print.jam <- function(x,...) print.gam(x,...) vcov.jam <- function(object,...) vcov.gam(object,...) plot.jam <- function(x,rug=TRUE,se=TRUE,pages=0,select=NULL,scale=-1, n=100,n2=40,pers=FALSE,theta=30,phi=30,jit=FALSE,xlab=NULL, ylab=NULL,main=NULL,ylim=NULL,xlim=NULL,too.far=0.1, shade=FALSE,shade.col="gray80", shift=0,trans=I,seWithMean=FALSE, scheme=0,...) { ## residuals, unconditional, by.resids and all.terms not supported... arg.names <- names(list(...)) if (length(arg.names)>0) { if ("residuals"%in% arg.names) stop("residuals argument not supported") if ("unconditional"%in% arg.names) stop("unconditional argument not meaningful here") if ("by.resids"%in% arg.names) stop("by.resids argument not supported") if ("all.terms"%in% arg.names) stop("all.terms argument not supported") } plot.gam(x,residuals=FALSE,rug=rug,se=se,pages=pages,select=select,scale=scale, n=n,n2=n2,pers=pers,theta=theta,phi=phi,jit=jit,xlab=xlab, ylab=ylab,main=main,ylim=ylim,xlim=xlim,too.far=too.far, all.terms=FALSE,shade=shade,shade.col=shade.col, shift=shift,trans=trans,seWithMean=seWithMean, unconditional=FALSE,by.resids=FALSE, scheme=scheme,...) } ## plot.jam predict.jam <- function(object,newdata,type="link",se.fit=FALSE,terms=NULL, block.size=NULL,newdata.guaranteed=FALSE,na.action=na.pass,...) { class(object) <- "gam" ## cheat! arg.names <- names(list(...)) if (length(arg.names)>0) { if ("unconditional"%in% arg.names) warning("unconditional argument not meaningful here") } predict.gam(object,newdata,type=type,se.fit=se.fit,terms=terms, block.size=block.size,newdata.guaranteed=newdata.guaranteed, na.action=na.action,unconditional=FALSE,...) } ## predict.jam