library(lattice) data(volcano) foo <- data.frame(z = as.vector(volcano), x = rep(1:87, 61), y = rep(1:61, each = 87)) wireframe(z ~ x * y, foo) ## this used to give an error, but seems fine now (?) wireframe(z ~ x * y, foo, subset = z > 150) ## Example 1 (a). valgrind shows warnings, starting with ## ==9058== Invalid read of size 8 ## ==9058== at 0xA450AFF: wireframePanelCalculations (threeDplot.c:291) ## and subsequently in various other places in that function leading to ## ==9058== Conditional jump or move depends on uninitialised value(s) ## ==9058== at 0x3FFAA466CF: __printf_fp (in /lib64/libc-2.4.so) ## ==9058== by 0x3FFAA423AE: vfprintf (in /lib64/libc-2.4.so) ## ==9058== by 0x3FFAA4A477: fprintf (in /lib64/libc-2.4.so) ## ==9058== by 0x94975BE: PostScriptRLineTo (devPS.c:2683) ## A bit more tracing shows it is accessing element 4016 in an array of ## length 2456, and the plot seems nonsense (and random) when viewed on ## screen. (BDR, 2006/09/17) ## DS's earlier comment: what's this supposed to do ? weird thing is, ## result is random (probably indicator of memory access errors) if (FALSE) { wireframe(z + I(z + 100) ~ x * y, foo, subset = z > 150, scales = list(arrows = FALSE)) } ## this works as expected wireframe(z + I(z + 100) ~ x * y, foo) ## Example 1 (b). Another way of seeing the problem: ## this is OK: bar <- foo bar$z[bar$z < 150] <- NA wireframe(z + I(z + 100) ~ x * y, bar, scales = list(arrows = FALSE)) ## but this is not if (FALSE) { wireframe(z + I(z + 100) ~ x * y, subset(bar, !is.na(z)), scales = list(arrows = FALSE)) } ## Example 2. Probably another example of the same "bug": see ## https://stat.ethz.ch/pipermail/r-devel/2005-September/034544.html library(lattice) n <- 20 psteps <- 50 binomtable <- function(n, psteps) { x <- (0:(10*n))/10 p <- (0:psteps)/psteps dd <- expand.grid(x=x,p=p) dd$F <- pbinom(dd$x,n,dd$p) dd$x0 <-trunc(dd$x) dd } bt <- binomtable(n = 5, psteps = 100) bt[bt$x - bt$x0 >= 0.9, ]$F <- NA if (FALSE) { ## this is problematic wireframe(F ~ x * p, bt, groups = bt$x0, shade = TRUE, scales = list(arrows = FALSE)) } ## this one OK wireframe(F ~ x * p, bt, shade = TRUE, scales = list(arrows = FALSE)) ## this too wireframe(F ~ x * p | factor(x0), bt, ## groups = bt$x0, shade = TRUE, scales = list(arrows = FALSE)) ## Working hypothesis: the problem crops up when there are groups ## (specified either directly or through the formula interface) AND x ## and y values for each group don't represent the full evaluation ## grid. The second condition is a bit unclear. In example 2, each ## group's support is disjoint from that of the others. In example 1, ## both groups have the same support, they are just not the full grid.