#### ellipsoidhull : Find (and optionally draw) #### ----------- the smallest ellipsoid containining a set of points #### #### Just making the algorithms in clusplot() available more generally #### ( --> ./plotpart.q ) ### Author: Martin Maechler, Date: 21 Jan 2002, 15:41 ellipsoidhull <- function(x, tol = 0.01, maxit = 5000, ret.wt = FALSE, ret.sqdist = FALSE, ret.pr = FALSE) { if(!is.matrix(x) || !is.numeric(x)) stop("'x' must be numeric n x p matrix") if(anyNA(x)) { warning("omitting NAs") x <- na.omit(x) } n <- nrow(x) if(n == 0) stop("no points without missing values") p <- ncol(x) res <- .C(spannel, n, ndep= p, dat = cbind(1., x), sqdist = double(n), l1 = double((p+1) ^ 2), double(p), double(p), prob = double(n), double(p+1), eps = as.double(tol), maxit = as.integer(maxit), ierr = integer(1))# 0 or non-zero if(res$ierr != 0) cat("Error in Fortran routine computing the spanning ellipsoid,", "\n probably collinear data\n", sep="") if(any(res$prob < 0) || all(res$prob == 0)) stop("computed some negative or all 0 probabilities") conv <- res$maxit < maxit if(!conv) warning(gettextf("algorithm possibly not converged in %d iterations", maxit)) conv <- conv && res$ierr == 0 cov <- cov.wt(x, res$prob) ## cov.wt() in R has extra wt[] scaling; revert here res <- list(loc = cov$center, cov = cov$cov * (1 - sum(cov$wt^2)), d2 = weighted.mean(res$sqdist, res$prob), wt = if(ret.wt) cov$wt, sqdist = if(ret.sqdist) res$sqdist, prob= if(ret.pr) res$prob, tol = tol, eps = max(res$sqdist) - p, it = res$maxit, maxit= maxit, ierr = res$ierr, conv = conv) class(res) <- "ellipsoid" res } print.ellipsoid <- function(x, digits = max(1, getOption("digits") - 2), ...) { d <- length(x$loc) cat("'ellipsoid' in", d, "dimensions:\n center = (", format(x$loc, digits=digits), "); squared ave.radius d^2 = ", format(x$d2, digits=digits), "\n and shape matrix =\n") print(x$cov, digits = digits, ...) cat(" hence,",if(d==2)"area" else "volume"," = ", format(volume(x), digits=digits),"\n") if(!is.null(x$conv) && !x$conv) { cat("\n** Warning: ** the algorithm did not terminate reliably!\n ", if(x$ierr) "most probably because of collinear data" else "(in the available number of iterations)", "\n") } invisible(x) } volume <- function(object) UseMethod("volume") volume.ellipsoid <- function(object) { A <- object$cov pi * object$d2 * sqrt(det(A)) } ## For p = 2 : ## Return (x[i],y[i]) points, i = 1:n, on boundary of ellipse, given ## by 2 x 2 matrix A[], origin 'loc' and d(xy, loc) ^2 = 'd2' ellipsoidPoints <- function(A, d2, loc, n.half = 201) { if(length(d <- dim(A)) != 2 || (p <- d[1]) != d[2]) stop("'A' must be p x p cov-matrix defining an ellipsoid") if(p == 2) { detA <- A[1, 1] * A[2, 2] - A[1, 2]^2 yl2 <- A[2, 2] * d2 # = (y_max - y_loc)^2 y <- seq( - sqrt(yl2), sqrt(yl2), length = n.half) sqrt.discr <- sqrt(detA * pmax(0, yl2 - y^2))/A[2, 2] sqrt.discr[c(1, n.half)] <- 0 b <- loc[1] + A[1, 2]/A[2, 2] * y y <- loc[2] + y return(rbind(cbind( b - sqrt.discr, y), cbind(rev(b + sqrt.discr), rev(y)))) } else { ## p >= 3 detA <- det(A) ##-- need something like polar coordinates stop("ellipsoidPoints() not yet implemented for p >= 3 dim.") } } predict.ellipsoid <- function(object, n.out = 201, ...) ellipsoidPoints(object$cov, d2 = object$d2, loc= object$loc, n.half = n.out)