#### $Id$ agnes <- function(x, diss = inherits(x, "dist"), metric = "euclidean", stand = FALSE, method = "average", par.method, keep.diss = n < 100, keep.data = !diss, trace.lev = 0) { METHODS <- c("average", "single","complete", "ward","weighted", "flexible", "gaverage") ## hclust has more; 1 2 3 4 5 6 7 meth <- pmatch(method, METHODS) if(is.na(meth)) stop("invalid clustering method") if(meth == -1) stop("ambiguous clustering method") cl. <- match.call() method <- METHODS[meth] if(method == "flexible") { ## Lance-Williams formula (but *constant* coefficients): stopifnot((np <- length(a <- as.numeric(par.method))) >= 1) attr(method,"par") <- par.method <- if(np == 1)## default (a1= a, a2= a, b= 1-2a, c = 0) c(a, a, 1-2*a, 0) else if(np == 3) c(a, 0) else if(np == 4) a else stop("'par.method' must be of length 1, 3, or 4") ## if(any(par.method[1:2]) < 0) ## warning("method \"flexible\": alpha_1 or alpha_2 < 0 can give invalid dendrograms" } else if (method == "gaverage") { attr(method,"par") <- par.method <- if (missing(par.method)) { ## Default par.method: Using beta = -0.1 as advised in Belbin et al. (1992) beta <- -0.1 c(1-beta, 1-beta, beta, 0) } else { stopifnot((np <- length(b <- as.numeric(par.method))) >= 1) if(np == 1)## default (a1= 1-b, a2= 1-b, b= b, c= 0) c(1-b, 1-b, b, 0) else if(np == 3) c(b, 0) else if(np == 4) b else stop("'par.method' must be of length 1, 3, or 4") } ## if(any(par.method[1:2]) < 0) ## warning("method \"gaverage\": alpha_1 or alpha_2 < 0 can give invalid dendrograms" } else ## dummy (passed to C) par.method <- double() if((diss <- as.logical(diss))) { ## check type of input vector if(anyNA(x)) stop("NA-values in the dissimilarity matrix not allowed.") if(data.class(x) != "dissimilarity") { # try to convert to if(!is.null(dim(x))) { x <- as.dist(x) # or give an error } else { ## possibly convert input *vector* if(!is.numeric(x) || is.na(n <- sizeDiss(x))) stop("'x' is not and cannot be converted to class \"dissimilarity\"") attr(x, "Size") <- n } class(x) <- dissiCl if(is.null(attr(x,"Metric"))) attr(x, "Metric") <- "unspecified" } n <- attr(x, "Size") dv <- x[lower.to.upper.tri.inds(n)] ## prepare arguments for the Fortran call dv <- c(0., dv)# "double", 1st elem. "only for Fortran" (?) jp <- 1L mdata <- FALSE ndyst <- 0 x2 <- double(1) } else { ## check input matrix and standardize, if necessary x <- data.matrix(x) if(!is.numeric(x)) stop("x is not a numeric dataframe or matrix.") x2 <- if(stand) scale(x, scale = apply(x, 2, meanabsdev)) else x storage.mode(x2) <- "double" ndyst <- if(metric == "manhattan") 2 else 1 n <- nrow(x2) jp <- ncol(x2) if((mdata <- any(inax <- is.na(x2)))) { # TRUE if x[] has any NAs jtmd <- integer(jp) jtmd[apply(inax, 2L, any)] <- -1L ## VALue for MISsing DATa valmisdat <- 1.1* max(abs(range(x2, na.rm=TRUE))) x2[inax] <- valmisdat } dv <- double(1 + (n * (n - 1))/2) } if(n <= 1) stop("need at least 2 objects to cluster") stopifnot(length(trace.lev <- as.integer(trace.lev)) == 1) C.keep.diss <- keep.diss && !diss res <- .C(twins, as.integer(n), as.integer(jp), x2, dv, dis = double(if(C.keep.diss) length(dv) else 1), jdyss = if(C.keep.diss) diss + 10L else as.integer(diss), if(mdata) rep(valmisdat, jp) else double(1), if(mdata) jtmd else integer(jp), as.integer(ndyst), 1L,# jalg = 1 <==> AGNES meth,# integer integer(n), ner = integer(n), ban = double(n), ac = double(1), par.method, merge = matrix(0L, n - 1, 2), # integer trace = trace.lev) if(!diss) { ##give warning if some dissimilarities are missing. if(res$jdyss == -1) stop("No clustering performed, NA-values in the dissimilarity matrix.\n" ) if(keep.diss) { ## adapt Fortran output to S: ## convert lower matrix,read by rows, to upper matrix, read by rows. disv <- res$dis[-1] disv[disv == -1] <- NA disv <- disv[upper.to.lower.tri.inds(n)] class(disv) <- dissiCl attr(disv, "Size") <- nrow(x) attr(disv, "Metric") <- metric attr(disv, "Labels") <- dimnames(x)[[1]] } ##add labels to Fortran output if(length(dimnames(x)[[1]]) != 0) order.lab <- dimnames(x)[[1]][res$ner] } else { if(keep.diss) disv <- x ##add labels to Fortran output if(length(attr(x, "Labels")) != 0) order.lab <- attr(x, "Labels")[res$ner] } clustering <- list(order = res$ner, height = res$ban[-1], ac = res$ac, merge = res$merge, diss = if(keep.diss)disv, call = cl., method = METHODS[meth]) if(exists("order.lab")) clustering$order.lab <- order.lab if(keep.data && !diss) { if(mdata) x2[x2 == valmisdat] <- NA clustering$data <- x2 } class(clustering) <- c("agnes", "twins") clustering } summary.agnes <- function(object, ...) { class(object) <- "summary.agnes" object } print.agnes <- function(x, ...) { cat("Call: ", deparse(x$call), "\nAgglomerative coefficient: ", format(x$ac, ...), "\nOrder of objects:\n") print(if(length(x$order.lab) != 0) x$order.lab else x$order, quote = FALSE, ...) cat("Height (summary):\n"); print(summary(x$height), ...) cat("\nAvailable components:\n"); print(names(x), ...) invisible(x) } print.summary.agnes <- function(x, ...) { ## a bit more than print.agnes() .. cat("Object of class 'agnes' from call:\n", deparse(x$call), "\nAgglomerative coefficient: ", format(x$ac, ...), "\nOrder of objects:\n") print(if(length(x$order.lab) != 0) x$order.lab else x$order, quote = FALSE, ...) cat("Merge:\n"); print(x$merge, ...) cat("Height:\n"); print(x$height, ...) if(!is.null(x$diss)) { ## Dissimilarities: cat("\n"); print(summary(x$diss, ...)) } cat("\nAvailable components:\n"); print(names(x), ...) invisible(x) } as.dendrogram.twins <- function(object, ...) ## ... : really only 'hang' as.dendrogram(as.hclust(object), ...)