.onLoad <- function(lib, pkg) { if(is.null(getOption("max.print"))) options(max.print = 10000)#-> show() of large matrices } ## ------------- Virtual Classes ---------------------------------------- ## Mother class of all Matrix objects setClass("Matrix", representation(Dim = "integer", Dimnames = "list", "VIRTUAL"), prototype = prototype(Dim = integer(2), Dimnames = list(NULL,NULL)), validity = function(object) { Dim <- object@Dim if (length(Dim) != 2) return("Dim slot must be of length 2") if (any(Dim < 0)) return("Dim slot must contain non-negative values") Dn <- object@Dimnames if (!is.list(Dn) || length(Dn) != 2) return("'Dimnames' slot must be list of length 2") ## 'else' ok : TRUE }) ## The class of composite matrices - i.e. those for which it makes sense to ## create a factorization setClass("compMatrix", representation(factors = "list", "VIRTUAL"), contains = "Matrix") ## Virtual classes of Matrices determined by above/below diagonal relationships setClass("generalMatrix", representation = "VIRTUAL", contains = "compMatrix") setClass("symmetricMatrix", representation(uplo = "character", "VIRTUAL"), contains = "compMatrix") setClass("triangularMatrix", representation(uplo = "character", diag = "character", "VIRTUAL"), contains = "Matrix", validity = function(object) .Call(triangularMatrix_validate, object) ) ## Virtual class of numeric matrices setClass("dMatrix", representation(x = "numeric", "VIRTUAL"), contains = "Matrix", validity = function(object) .Call(dMatrix_validate, object)) ## Virtual class of integer matrices setClass("iMatrix", representation(x = "integer", "VIRTUAL"), contains = "Matrix") ## Virtual class of logical matrices setClass("lMatrix", representation("VIRTUAL"), contains = "Matrix") ## Note that logical sparse matrices do not need an x slot so the x ## slot is part of the ldenseMatrix class ## Virtual class of complex matrices setClass("zMatrix", # letter 'z' is as in the names of Lapack subroutines representation(x = "complex", "VIRTUAL"), contains = "Matrix") ## Virtual class of dense matrices (including "packed") setClass("denseMatrix", representation("VIRTUAL"), contains = "Matrix") ## Virtual class of dense, numeric matrices setClass("ddenseMatrix", representation("VIRTUAL"), contains = c("dMatrix", "denseMatrix")) ## Virtual class of dense, logical matrices setClass("ldenseMatrix", representation(x = "logical", "VIRTUAL"), contains = c("lMatrix", "denseMatrix")) ## diagonal: has 'diag' slot; diag = "U" <--> have identity matrix setClass("diagonalMatrix", representation(diag = "character", "VIRTUAL"), contains = "denseMatrix", validity = function(object) { d <- object@Dim if(d[1] != (n <- d[2])) return("matrix is not square") lx <- length(object@x) if(object@diag == "U" && lx != 0) return("diag = \"U\" (identity matrix) requires empty 'x' slot") if(object@diag == "N" && lx != n) return("diagonal matrix has 'x' slot of length != 'n'") TRUE }, prototype = prototype(diag = "N") ) ## virtual SPARSE ------------ setClass("sparseMatrix", representation("VIRTUAL"), contains = "Matrix") ## sparse matrices in Triplet representation (dgT, lgT, ..): setClass("TsparseMatrix", representation(i = "integer", j = "integer", "VIRTUAL"), contains = "sparseMatrix", validity = function(object) .Call(Tsparse_validate, object) ) setClass("CsparseMatrix", representation(i = "integer", p = "integer", "VIRTUAL"), contains = "sparseMatrix") setClass("RsparseMatrix", representation(p = "integer", j = "integer", "VIRTUAL"), contains = "sparseMatrix") setClass("dsparseMatrix", representation("VIRTUAL"), contains = c("dMatrix", "sparseMatrix")) setClass("lsparseMatrix", representation("VIRTUAL"), contains = c("lMatrix", "sparseMatrix")) ## ------------------ Proper (non-virtual) Classes ---------------------------- ##---------------------- DENSE ----------------------------------------- ## numeric, dense, general matrices setClass("dgeMatrix", contains = c("ddenseMatrix", "generalMatrix"), ## checks that length( @ x) == prod( @ Dim): validity = function(object) .Call(dgeMatrix_validate, object) ) ## i.e. "dgeMatrix" cannot be packed, but "ddenseMatrix" can .. ## numeric, dense, non-packed, triangular matrices setClass("dtrMatrix", contains = c("ddenseMatrix", "triangularMatrix"), prototype = prototype(uplo = "U", diag = "N"), validity = function(object) .Call(dtrMatrix_validate, object) ) ## numeric, dense, packed, triangular matrices setClass("dtpMatrix", contains = c("ddenseMatrix", "triangularMatrix"), prototype = prototype(uplo = "U", diag = "N"), validity = function(object) .Call(dtpMatrix_validate, object) ) ## numeric, dense, non-packed symmetric matrices setClass("dsyMatrix", ## FIXME? ##> 'ddense*' before 'dge*' so it can use d* or ddense* methods ##> WITHOUT a coerce to dge* (losing symmetry) ##> gives error in crossprod() dispatch ##> contains = c("ddenseMatrix", "dgeMatrix", "symmetricMatrix"), contains = c("ddenseMatrix", "symmetricMatrix"), prototype = prototype(uplo = "U"), validity = function(object) .Call(dsyMatrix_validate, object) ) ## numeric, dense, packed symmetric matrices setClass("dspMatrix", prototype = prototype(uplo = "U"), contains = c("ddenseMatrix", "symmetricMatrix"), validity = function(object) .Call(dspMatrix_validate, object) ) ## numeric, dense, non-packed, positive-definite, symmetric matrices setClass("dpoMatrix", contains = "dsyMatrix", validity = function(object) .Call(dpoMatrix_validate, object) ) ## numeric, dense, packed, positive-definite, symmetric matrices setClass("dppMatrix", contains = "dspMatrix", validity = function(object) .Call(dppMatrix_validate, object) ) ##----- logical dense Matrices -- e.g. as result of COMPARISON ## numeric, dense, general matrices setClass("lgeMatrix", contains = c("ldenseMatrix", "generalMatrix"), ## checks that length( @ x) == prod( @ Dim): validity = function(object) stopifnot(length(object@x) == prod(object@Dim)) ) ## i.e. "lgeMatrix" cannot be packed, but "ldenseMatrix" can .. ## numeric, dense, non-packed, triangular matrices setClass("ltrMatrix", contains = c("ldenseMatrix", "triangularMatrix"), prototype = prototype(uplo = "U", diag = "N")) ## numeric, dense, packed, triangular matrices setClass("ltpMatrix", contains = c("ldenseMatrix", "triangularMatrix"), prototype = prototype(uplo = "U", diag = "N") ## validity: ldense*, triangular* should suffice ) ## numeric, dense, non-packed symmetric matrices setClass("lsyMatrix", contains = c("ldenseMatrix", "symmetricMatrix"), prototype = prototype(uplo = "U") ##, validity = function(object) .Call(lsyMatrix_validate, object) ) ## numeric, dense, packed symmetric matrices setClass("lspMatrix", contains = c("ldenseMatrix", "symmetricMatrix"), prototype = prototype(uplo = "U"), validity = function(object) .Call(dspMatrix_validate, object) ## "dsp" and "lsp" have the same validate ) ## 'diagonalMatrix' already has validity checking ## diagonal, numeric matrices; "d*" has 'x' slot : setClass("ddiMatrix", contains = c("diagonalMatrix", "ddenseMatrix"))# or "dMatrix" ## diagonal, logical matrices; "ldense*" has 'x' slot : setClass("ldiMatrix", contains = c("diagonalMatrix", "ldenseMatrix")) setClass("corMatrix", representation(sd = "numeric"), contains = "dpoMatrix") ##-------------------- S P A R S E (non-virtual) -------------------------- ##---------- numeric sparse matrix classes -------------------------------- ## numeric, sparse, triplet general matrices setClass("dgTMatrix", contains = c("TsparseMatrix", "dsparseMatrix", "generalMatrix"), validity = function(object) .Call(dgTMatrix_validate, object) ) ## Should not have dtTMatrix inherit from dgTMatrix because a dtTMatrix could ## be less than fully stored if diag = "U". Methods for the dgTMatrix ## class would not produce correct results even though all the slots ## are present. ## numeric, sparse, triplet triangular matrices setClass("dtTMatrix", contains = c("TsparseMatrix", "dsparseMatrix", "triangularMatrix"), prototype = prototype(uplo = "U", diag = "N"), validity = function(object) .Call(dtTMatrix_validate, object) ) ## Should not have dsTMatrix inherit from dgTMatrix because a dsTMatrix ## is not fully stored. Methods for the dgTMatrix class would not ## produce correct results even though all the slots are present. ## numeric, sparse, triplet symmetric matrices setClass("dsTMatrix", contains = c("TsparseMatrix", "dsparseMatrix", "symmetricMatrix"), prototype = prototype(uplo = "U"), validity = function(object) .Call(dsTMatrix_validate, object) ) ## numeric, sparse, sorted compressed sparse column-oriented general matrices setClass("dgCMatrix", contains = c("CsparseMatrix", "dsparseMatrix", "generalMatrix"), prototype = prototype(p = 0:0),# to be valid validity = function(object) .Call(dgCMatrix_validate, object) ) ## see comments for dtTMatrix above ## numeric, sparse, sorted compressed sparse column-oriented triangular matrices setClass("dtCMatrix", contains = c("CsparseMatrix", "dsparseMatrix", "triangularMatrix"), prototype = prototype(p = 0:0, uplo = "U", diag = "N"),# to be valid validity = function(object) .Call(dtCMatrix_validate, object) ) ## see comments for dsTMatrix above ## numeric, sparse, sorted compressed sparse column-oriented symmetric matrices setClass("dsCMatrix", contains = c("CsparseMatrix", "dsparseMatrix", "symmetricMatrix"), prototype = prototype(p = 0:0, uplo = "U"),# to be valid validity = function(object) .Call(dsCMatrix_validate, object) ) ## numeric, sparse, sorted compressed sparse row-oriented general matrices setClass("dgRMatrix", contains = c("RsparseMatrix", "dsparseMatrix", "generalMatrix"), prototype = prototype(p = 0:0), ##TODO: validity = function(object) .Call(dgRMatrix_validate, object) ) ## numeric, sparse, sorted compressed sparse row-oriented triangular matrices setClass("dtRMatrix", contains = c("RsparseMatrix", "dsparseMatrix", "triangularMatrix"), prototype = prototype(p = 0:0, uplo = "U", diag = "N"),# to be valid ##TODO: validity = function(object) .Call(dtRMatrix_validate, object) ) ## numeric, sparse, sorted compressed sparse row-oriented symmetric matrices setClass("dsRMatrix", contains = c("RsparseMatrix", "dsparseMatrix", "symmetricMatrix"), prototype = prototype(p = 0:0, uplo = "U"),# to be valid ##TODO: validity = function(object) .Call(dsRMatrix_validate, object) ) ##---------- logical sparse matrix classes -------------------------------- ## these classes are used in symbolic analysis to determine the ## locations of non-zero entries ## logical, sparse, triplet general matrices setClass("lgTMatrix", contains = c("TsparseMatrix", "lsparseMatrix", "generalMatrix"), validity = function(object) .Call(lgTMatrix_validate, object) ) ## logical, sparse, triplet triangular matrices setClass("ltTMatrix", contains = c("TsparseMatrix", "lsparseMatrix", "triangularMatrix"), prototype = prototype(uplo = "U", diag = "N"), validity = function(object) .Call(ltTMatrix_validate, object) ) ## logical, sparse, triplet symmetric matrices setClass("lsTMatrix", contains = c("TsparseMatrix", "lsparseMatrix", "symmetricMatrix"), validity = function(object) .Call(lsTMatrix_validate, object) ) ## logical, sparse, sorted compressed sparse column-oriented general matrices setClass("lgCMatrix", contains = c("CsparseMatrix", "lsparseMatrix", "generalMatrix"), prototype = prototype(p = 0:0),# to be valid validity = function(object) .Call(lgCMatrix_validate, object) ) ## logical, sparse, sorted compressed sparse column-oriented triangular matrices setClass("ltCMatrix", contains = c("CsparseMatrix", "lsparseMatrix", "triangularMatrix"), prototype = prototype(p = 0:0, uplo = "U", diag = "N"),# to be valid validity = function(object) .Call(ltCMatrix_validate, object) ) ## logical, sparse, sorted compressed sparse column-oriented symmetric matrices setClass("lsCMatrix", contains = c("CsparseMatrix", "lsparseMatrix", "symmetricMatrix"), prototype = prototype(p = 0:0, uplo = "U"),# to be valid validity = function(object) .Call(lsCMatrix_validate, object) ) ## logical, sparse, sorted compressed sparse row-oriented general matrices setClass("lgRMatrix", representation(j = "integer", p = "integer"), contains = c("RsparseMatrix", "lsparseMatrix", "generalMatrix"), validity = function(object) .Call(lgRMatrix_validate, object) ) ## logical, sparse, sorted compressed sparse row-oriented triangular matrices setClass("ltRMatrix", contains = c("RsparseMatrix", "lsparseMatrix", "triangularMatrix"), validity = function(object) .Call(ltRMatrix_validate, object) ) ## logical, sparse, sorted compressed sparse row-oriented symmetric matrices setClass("lsRMatrix", contains = c("RsparseMatrix", "lsparseMatrix", "symmetricMatrix"), validity = function(object) .Call(lsRMatrix_validate, object) ) ##-------------------- permutation ---------------------------------------- setClass("pMatrix", representation(perm = "integer"), contains = "sparseMatrix", validity = function(object) { d <- object@Dim if (d[2] != (n <- d[1])) return("pMatrix must be square") perm <- object@perm if (length(perm) != n) return(paste("length of 'perm' slot must be", n)) if(n > 0 && !(all(range(perm) == c(1, n)) && length(unique(perm)) == n)) return("'perm' slot is not a valid permutation") TRUE }) ### Factorization classes --------------------------------------------- ## Mother class: setClass("MatrixFactorization", representation(Dim = "integer", "VIRTUAL")) ## -- Those (exceptions) inheriting from "Matrix" : --- ## FIXME: not yet containing "MatrixFactorization" because of ## ----- multiple-dispatch bug: show() would call the ## method of "MatrixFactorization" instead of the one for "dtpMatrix": setClass("Cholesky", contains = c("dtrMatrix" ##, "MatrixFactorization" )) setClass("LDL", contains = c("dtrMatrix" ##, "MatrixFactorization" )) setClass("pCholesky", contains = c("dtpMatrix" ##, "MatrixFactorization" )) setClass("BunchKaufman", contains = c("dtrMatrix"), ##, "MatrixFactorization"), representation(perm = "integer"), validity = function(object) .Call(BunchKaufman_validate, object) ) setClass("pBunchKaufman", contains = c("dtpMatrix"), ##, "MatrixFactorization"), representation(perm = "integer"), validity = function(object) .Call(pBunchKaufman_validate, object) ) ## -- the usual ``non-Matrix'' factorizations : --------- setClass("CHMfactor", # cholmod_factor struct as S4 object contains = "MatrixFactorization", representation(colcount = "integer", perm = "integer", type = "integer", "VIRTUAL"), validity = function(object) .Call(CHMfactor_validate, object) ) setClass("CHMsuper", # supernodal cholmod_factor contains = "CHMfactor", representation(super = "integer", pi = "integer", px = "integer", s = "integer", "VIRTUAL"), validity = function(object) .Call(CHMsuper_validate, object)) setClass("CHMsimpl", # simplicial cholmod_factor contains = "CHMfactor", representation(p = "integer", i = "integer", nz = "integer", nxt = "integer", prv = "integer", "VIRTUAL"), validity = function(object) .Call(CHMsimpl_validate, object)) setClass("dCHMsuper", contains = "CHMsuper", representation(x = "numeric")) setClass("lCHMsuper", contains = "CHMsuper") setClass("dCHMsimpl", contains = "CHMsimpl", representation(x = "numeric")) setClass("lCHMsimpl", contains = "CHMsimpl") ##--- LU --- setClass("LU", contains = "MatrixFactorization", representation("VIRTUAL")) setClass("denseLU", contains = "LU", representation(x = "numeric", perm = "integer"), validity = function(object) .Call(LU_validate, object)) setClass("sparseLU", contains = "LU", representation(L = "dgCMatrix", U = "dgCMatrix", p = "integer", q = "integer")) ##--- QR --- setClass("sparseQR", contains = "MatrixFactorization", representation(V = "dgCMatrix", beta = "numeric", p = "integer", R = "dgCMatrix", q = "integer")) ## "denseQR" -- ? (``a version of'' S3 class "qr") if (FALSE) { ## unused classes setClass("csn_QR", representation(U = "dgCMatrix", L = "dgCMatrix", beta = "numeric")) setClass("csn_LU", representation(U = "dgCMatrix", L = "dgCMatrix", Pinv = "integer")) setClass("css_QR", representation(Pinv = "integer", Q = "integer", parent = "integer", cp = "integer", nz = "integer")) setClass("css_LU", representation(Q = "integer", nz = "integer")) } ### Class Union : no inheritance, but is(*, ) : ## Definition Packed := dense with length( . @x) < prod( . @Dim) ## ~~~~~~ ## REPLACED the following with isPacked() in ./Auxiliaries.R : ## setClassUnion("packedMatrix", ## members = c("dspMatrix", "dppMatrix", "dtpMatrix", ## "lspMatrix", "ltpMatrix", "diagonalMatrix")) ## --------------------- non-"Matrix" Classes -------------------------------- ## --- "General" (not Matrix at all) ---- ## for 'i' in x[i] or A[i,] : setClassUnion("index", members = c("numeric", "logical", "character")) ### for 'value' in x[..] <- value : setClassUnion("replValue", members = c("numeric", "logical")) ## --- Matrix - related (but not "Matrix" nor "Decomposition/Factorization): setClass("determinant", representation(modulus = "numeric", logarithm = "logical", sign = "integer", call = "call"))