library(Matrix) ## Matrix Exponential source(system.file("test-tools.R", package = "Matrix")) ## e ^ 0 = 1 - for matrices: assert.EQ.mat(expm(Matrix(0, 3,3)), diag(3), tol = 0)# exactly ## e ^ diag(.) = diag(e ^ .): assert.EQ.mat(expm(as(diag(-1:4), "dgeMatrix")), diag(exp(-1:4))) set.seed(1) rE <- replicate(100, { x <- rlnorm(12) relErr(as(expm(as(diag(x), "dgeMatrix")), "matrix"), diag(exp(x))) }) stopifnot(mean(rE) < 1e-15, max(rE) < 1e-14) summary(rE) ## Some small matrices m1 <- Matrix(c(1,0,1,1), nc = 2) e1 <- expm(m1) assert.EQ.mat(e1, cbind(c(exp(1),0), exp(1))) m2 <- Matrix(c(-49, -64, 24, 31), nc = 2) e2 <- expm(m2) ## The true matrix exponential is 'te2': e_1 <- exp(-1) e_17 <- exp(-17) te2 <- rbind(c(3*e_17 - 2*e_1, -3/2*e_17 + 3/2*e_1), c(4*e_17 - 4*e_1, -2 *e_17 + 3 *e_1)) assert.EQ.mat(e2, te2, tol = 1e-13) ## See the (average relative) difference: all.equal(as(e2,"matrix"), te2, tol = 0) # 1.48e-14 on "lynne" ## The ``surprising identity'' det(exp(A)) == exp( tr(A) ) ## or log det(exp(A)) == tr(A) : stopifnot(all.equal(c(determinant(e2)$modulus), sum(diag(m2)))) m3 <- Matrix(cbind(0,rbind(6*diag(3),0)), nc = 4)# sparse e3 <- expm(m3) E3 <- expm(Matrix(m3, sparse=FALSE)) stopifnot(identical(e3, E3)) e3. <- rbind(c(1,6,18,36), c(0,1, 6,18), c(0,0, 1, 6), c(0,0, 0, 1)) assert.EQ.mat(e3, e3.) proc.time() # for ``statistical reasons''