### Testing positive definite matrices library(Matrix) h9 <- Hilbert(9) stopifnot(c(0,0) == dim(Hilbert(0)), c(9,9) == dim(h9)) str(h9) all.equal(c(determinant(h9)$modulus), -96.7369456, tol= 2e-8) stopifnot(0 == length(h9@factors))# nothing yet round(ch9 <- chol(h9), 3) ## round() preserves 'triangular' ! str(f9 <- as(chol(h9), "dtrMatrix")) ## h9 now has factorization stopifnot(names(h9@factors) == "Cholesky", all.equal(rcond(h9), 9.0938e-13), all.equal(rcond(f9), 9.1272e-7, tol = 1e-6))# more precision fails str(h9)# has 'factors' options(digits=4) (cf9 <- crossprod(f9))# looks the same as h9 : stopifnot(all.equal(as.matrix(h9), as.matrix(cf9), tol= 1e-15)) h9. <- round(h9, 2) h9.p <- as(h9., "dppMatrix") h4 <- h9.[1:4, 1:4] # this and the next h9.[1,1] <- 10 # had failed in 0.995-14 if(FALSE) # FIXME: Error in insertMethod(methods, sig, args, def, TRUE) :... h9.p. <- as(h9., "dppMatrix") h9.p[1,1] <- 10 # failed in 0.995-14 stopifnot(is(h9., "symmetricMatrix"), is(h9.p, "symmetricMatrix"), is(h4, "symmetricMatrix")) h9.p[1,2] <- 99 #-> becomes "dgeMatrix" str(hp9 <- as(h9, "dppMatrix"))# packed stopifnot(is(thp9 <- t(hp9), "dppMatrix")) hs <- as(hp9, "dspMatrix") hs@x <- 1/hp9@x # is not pos.def. anymore validObject(hs) stopifnot(diag(hs) == seq(1, by = 2, length = 9)) s9 <- solve(hp9, seq(nrow(hp9))) signif(t(s9)/10000, 4)# only rounded numbers are platform-independent (I9 <- hp9 %*% s9) m9 <- matrix(1:9, dimnames = list(NULL,NULL)) stopifnot(all.equal(m9, as.matrix(I9), tol = 2e-9)) cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''