R version 2.5.1 beta (2007-06-13 r41947) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## For both 'Extract' ("[") and 'Replace' ("[<-") Method testing > > library(Matrix) Loading required package: lattice > > source(system.file("test-tools.R", package = "Matrix"))# identical3() etc > > ### Dense Matrices > > m <- Matrix(1:28 +0, nrow = 7) > validObject(m) [1] TRUE > stopifnot(identical(m, m[]), + identical(m[2, 3], 16), # simple number + identical(m[2, 3:4], c(16,23))) # simple numeric of length 2 > > m[2, 3:4, drop=FALSE] # sub matrix of class 'dgeMatrix' 1 x 2 Matrix of class "dgeMatrix" [,1] [,2] [1,] 16 23 > m[-(4:7), 3:4] # dito; the upper right corner of 'm' 3 x 2 Matrix of class "dgeMatrix" [,1] [,2] [1,] 15 22 [2,] 16 23 [3,] 17 24 > > ## rows or columns only: > m[1,] # first row, as simple numeric vector [1] 1 8 15 22 > m[,2] # 2nd column [1] 8 9 10 11 12 13 14 > m[,1:2] # sub matrix of first two columns 7 x 2 Matrix of class "dgeMatrix" [,1] [,2] [1,] 1 8 [2,] 2 9 [3,] 3 10 [4,] 4 11 [5,] 5 12 [6,] 6 13 [7,] 7 14 > m[-(1:6),, drop=FALSE] # not the first 6 rows, i.e. only the 7th 1 x 4 Matrix of class "dgeMatrix" [,1] [,2] [,3] [,4] [1,] 7 14 21 28 > m[integer(0),] #-> 0 x 4 Matrix 0 x 4 Matrix of class "dgeMatrix" [,1] [,2] [,3] [,4] > m[2:4, numeric(0)] #-> 3 x 0 Matrix 3 x 0 Matrix of class "dgeMatrix" [1,] [2,] [3,] > > ## logical indexing > stopifnot(identical(m[2,3], m[(1:nrow(m)) == 2, (1:ncol(m)) == 3]), + identical(m[2,], m[(1:nrow(m)) == 2, ]), + identical(m[,3:4], m[, (1:4) >= 3])) > > ## dimnames indexing: > mn <- m > dimnames(mn) <- list(paste("r",letters[1:nrow(mn)],sep=""), + LETTERS[1:ncol(mn)]) > mn["rd", "D"] [1] 25 > stopifnot(identical(mn["rc", "D"], mn[3,4]), mn[3,4] == 24, + identical(mn[, "A"], mn[,1]), mn[,1] == 1:7, + identical(mn[c("re", "rb"), "B"], mn[c(5,2), 2]) + ) > > mo <- m > m[2,3] <- 100 > m[1:2, 4] <- 200 > m[, 1] <- -1 > m[1:3,] 3 x 4 Matrix of class "dgeMatrix" [,1] [,2] [,3] [,4] [1,] -1 8 15 200 [2,] -1 9 100 200 [3,] -1 10 17 24 > > m. <- as.matrix(m) > > ## m[ cbind(i,j) ] indexing: > ij <- cbind(1:6, 2:3) > stopifnot(identical(m[ij], m.[ij])) > > ## testing operations on logical Matrices rather more than indexing: > g10 <- m [ m > 10 ] > stopifnot(18 == length(g10)) > stopifnot(10 == length(m[ m <= 10 ])) > sel <- (20 < m) & (m < 150) > sel.<- (20 < m.)& (m.< 150) > nsel <-(20 >= m) | (m >= 150) > (ssel <- as(sel, "sparseMatrix")) 7 x 4 sparse Matrix of class "lgCMatrix" [1,] . . . . [2,] . . | . [3,] . . . | [4,] . . . | [5,] . . . | [6,] . . . | [7,] . . | | > stopifnot(is(sel, "lMatrix"), is(ssel, "lsparseMatrix"), + identical3(as.mat(sel.), as.mat(sel), as.mat(ssel)), + identical3(!sel, !ssel, nsel), # ! is typically dense + identical3(m[ sel], m[ ssel], as.matrix(m)[as.matrix( ssel)]), + identical3(m[!sel], m[!ssel], as.matrix(m)[as.matrix(!ssel)]) + ) > > ## more sparse Matrices -------------------------------------- > > m <- 1:800 > set.seed(101) ; m[sample(800, 600)] <- 0 > m <- Matrix(m, nrow = 40) > mm <- as(m, "matrix") > dimnames(mm) <- NULL ## << workaround: as(, "matrix") has NULL dimnames > str(mC <- as(m, "dgCMatrix")) Formal class 'dgCMatrix' [package "Matrix"] with 6 slots ..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ... ..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ... ..@ Dim : int [1:2] 40 20 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL ..@ x : num [1:200] 3 7 12 22 25 30 38 39 42 45 ... ..@ factors : list() > str(mT <- as(m, "dgTMatrix")) Formal class 'dgTMatrix' [package "Matrix"] with 6 slots ..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ... ..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ... ..@ Dim : int [1:2] 40 20 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL ..@ x : num [1:200] 3 7 12 22 25 30 38 39 42 45 ... ..@ factors : list() > stopifnot(identical(mT, as(mC, "dgTMatrix")), + identical(mC, as(mT, "dgCMatrix"))) > > mC[,1] [1] 0 0 3 0 0 0 7 0 0 0 0 12 0 0 0 0 0 0 0 0 0 22 0 0 25 [26] 0 0 0 0 30 0 0 0 0 0 0 0 38 39 0 > mC[1:2,] 2 x 20 sparse Matrix of class "dgCMatrix" [1,] . . . 121 . . 241 . . . . 441 . . 561 . 641 . . . [2,] . 42 . . . 202 . . . . . . 482 522 . . . . 722 . > mC[7, drop = FALSE] 1 x 20 sparse Matrix of class "dgCMatrix" [1,] 7 . . . . . . 287 . . 407 . 487 527 . . . . 727 . > assert.EQ.mat(mC[1:2,], mm[1:2,]) > > ## *repeated* (aka 'duplicated') indices - did not work at all ... > i <- rep(8:10,2) > j <- c(2:4, 4:3) > assert.EQ.mat(mC[i,], mm[i,]) > assert.EQ.mat(mC[,j], mm[,j]) > assert.EQ.mat(mC[i, 2:1], mm[i, 2:1]) > assert.EQ.mat(mC[c(4,1,2:1), j], mm[c(4,1,2:1), j]) > assert.EQ.mat(mC[i,j], mm[i,j]) > set.seed(7) > for(n in 1:50) { + i <- sample(sample(nrow(mC), 7), 20, replace = TRUE) + j <- sample(sample(ncol(mC), 6), 17, replace = TRUE) + assert.EQ.mat(mC[i,j], mm[i,j]) + } > > ##---- Symmetric indexing of symmetric Matrix ---------- > m. <- mC; m.[, c(2, 7:12)] <- 0 > validObject(S <- crossprod(add.simpleDimnames(m.) %% 100)) [1] TRUE > ss <- as(S, "matrix") > T <- as(S, "TsparseMatrix") > ## non-repeated indices: > i <- c(7:5, 2:4);assert.EQ.mat(T[i,i], ss[i,i]) > N <- nrow(T) > set.seed(11) > for(n in 1:50) { + i <- sample(N, max(2, sample(N,1)), replace = FALSE) + validObject(Tii <- T[i,i]) + stopifnot(is(Tii, "dsTMatrix"), # remained symmetric Tsparse + identical(t(Tii), t(T)[i,i])) + assert.EQ.mat(Tii, ss[i,i]) + } > > ## repeated ones ``the challenge'' (to do smartly): > j <- c(4, 4, 9, 12, 9, 4, 17, 3, 18, 4, 12, 18, 4, 9) > assert.EQ.mat(T[j,j], ss[j,j]) > ## and another two sets (a, A) & (a., A.) : > a <- matrix(0, 6,6) > a[upper.tri(a)] <- (utr <- c(2, 0,-1, 0,0,5, 7,0,0,0, 0,0,-2,0,8)) > ta <- t(a); ta[upper.tri(a)] <- utr; a <- t(ta) > diag(a) <- c(0,3,0,4,6,0) > A <- as(Matrix(a), "TsparseMatrix") > A. <- A > diag(A.) <- 10 * (1:6) > a. <- as(A., "matrix") > ## More testing {this was not working for a long time..} > set.seed(1) > for(n in 1:100) { + i <- sample(1:nrow(A), 3+2*rpois(1, lam=3), replace=TRUE) + Aii <- A[i,i] + A.ii <- A.[i,i] + stopifnot(class(Aii) == class(A), + class(A.ii) == class(A.)) + assert.EQ.mat(Aii , a [i,i]) + assert.EQ.mat(A.ii, a.[i,i]) + assert.EQ.mat(T[i,i], ss[i,i]) + } > > > stopifnot(all.equal(mC[,3], mm[,3]), + identical(mC[ij], mm[ij])) > assert.EQ.mat(mC[7, , drop=FALSE], mm[7, , drop=FALSE]) > > stopifnot(dim(mC[numeric(0), ]) == c(0,20), # used to give warnings + dim(mC[, integer(0)]) == c(40,0), + identical(mC[, integer(0)], mC[, FALSE]), + identical(mC[7, drop = FALSE], + mC[7,, drop = FALSE])) > validObject(print(mT[,c(2,4)])) [1,] . 121 [2,] 42 . [3,] . . [4,] . . [5,] 45 . [6,] . . [7,] . . [8,] . 128 [9,] . 129 [10,] 50 . [11,] . . [12,] 52 132 [13,] . 133 [14,] . . [15,] 55 . [16,] . . [17,] . . [18,] . 138 [19,] . . [20,] . . [21,] . 141 [22,] . 142 [23,] 63 . [24,] . . [25,] 65 . [26,] . . [27,] 67 . [28,] 68 . [29,] . . [30,] . . [31,] 71 . [32,] 72 . [33,] . . [34,] 74 . [35,] . . [36,] 76 . [37,] . . [38,] . . [39,] . 159 [40,] 80 . [1] TRUE > stopifnot(all.equal(mT[2,], mm[2,]), + ## row or column indexing in combination with t() : + identical(mT[2,], t(mT)[,2]), + identical(mT[-2,], t(t(mT)[,-2])), + identical(mT[c(2,5),], t(t(mT)[,c(2,5)])) + ) > assert.EQ.mat(mT[4,, drop = FALSE], mm[4,, drop = FALSE]) > stopifnot(identical3(mm[,1], mC[,1], mT[,1]), + identical3(mm[3,], mC[3,], mT[3,]), + identical3(mT[2,3], mC[2,3], 0), + identical(mT[], mT), + identical4( mm[c(3,7), 2:4], as.mat( m[c(3,7), 2:4]), + as.mat(mT[c(3,7), 2:4]), as.mat(mC[c(3,7), 2:4])) + ) > > x.x <- crossprod(mC) > stopifnot(class(x.x) == "dsCMatrix", + class(x.x. <- round(x.x / 10000)) == "dsCMatrix", + identical(x.x[cbind(2:6, 2:6)], + diag(x.x [2:6, 2:6]))) > head(x.x.) # Note the *non*-structural 0's printed as "0" 6 x 20 sparse Matrix of class "dgCMatrix" [1,] 1 0 . 1 . 1 1 3 . 3 2 1 6 1 . 2 4 6 5 1 [2,] 0 6 2 1 3 5 7 5 12 14 14 9 11 16 12 13 17 19 19 10 [3,] . 2 6 . 4 2 5 3 8 12 5 16 9 11 23 . . 6 7 7 [4,] 1 1 . 17 . 8 10 13 8 6 18 18 29 35 14 8 25 10 19 21 [5,] . 3 4 . 14 4 10 . . 29 8 9 19 11 11 . . 26 26 16 [6,] 1 5 2 8 4 42 5 19 14 9 8 10 42 56 50 27 29 32 64 16 > tail(x.x., -3) # all but the first three lines 17 x 20 sparse Matrix of class "dgCMatrix" [4,] 1 1 . 17 . 8 10 13 8 6 18 18 29 35 14 8 25 10 19 21 [5,] . 3 4 . 14 4 10 . . 29 8 9 19 11 11 . . 26 26 16 [6,] 1 5 2 8 4 42 5 19 14 9 8 10 42 56 50 27 29 32 64 16 [7,] 1 7 5 10 10 5 87 14 9 31 77 47 79 43 28 17 67 110 36 121 [8,] 3 5 3 13 . 19 14 70 10 24 37 13 59 62 34 19 58 21 64 44 [9,] . 12 8 8 . 14 9 10 116 41 58 33 33 72 78 43 69 72 75 25 [10,] 3 14 12 6 29 9 31 24 41 167 69 56 99 44 70 24 105 82 85 32 [11,] 2 14 5 18 8 8 77 37 58 69 267 80 86 139 49 105 194 119 122 129 [12,] 1 9 16 18 9 10 47 13 33 56 80 194 70 77 81 . 90 32 . 106 [13,] 6 11 9 29 19 42 79 59 33 99 86 70 324 157 55 . 69 142 144 155 [14,] 1 16 11 35 11 56 43 62 72 44 139 77 157 375 123 102 145 39 196 81 [15,] . 12 23 14 11 50 28 34 78 70 49 81 55 123 368 71 112 41 41 86 [16,] 2 13 . 8 . 27 17 19 43 24 105 . . 102 71 233 124 44 139 . [17,] 4 17 . 25 . 29 67 58 69 105 194 90 69 145 112 124 523 141 245 100 [18,] 6 19 6 10 26 32 110 21 72 82 119 32 142 39 41 44 141 497 104 111 [19,] 5 19 7 19 26 64 36 64 75 85 122 . 144 196 41 139 245 104 542 55 [20,] 1 10 7 21 16 16 121 44 25 32 129 106 155 81 86 . 100 111 55 541 > > lx.x <- as(x.x, "lsCMatrix") # FALSE only for "structural" 0 > (l10 <- lx.x[1:10, 1:10])# "lsC" 10 x 10 sparse Matrix of class "lsCMatrix" [1,] | | . | . | | | . | [2,] | | | | | | | | | | [3,] . | | . | | | | | | [4,] | | . | . | | | | | [5,] . | | . | | | . . | [6,] | | | | | | | | | | [7,] | | | | | | | | | | [8,] | | | | . | | | | | [9,] . | | | . | | | | | [10,] | | | | | | | | | | > (l3 <- lx.x[1:3, ]) 3 x 20 sparse Matrix of class "lgCMatrix" [1,] | | . | . | | | . | | | | | . | | | | | [2,] | | | | | | | | | | | | | | | | | | | | [3,] . | | . | | | | | | | | | | | . . | | | > m.x <- as(x.x, "matrix") > stopifnot(class(l10) == "lsCMatrix", # symmetric indexing -> symmetric ! + identical(as.mat(lx.x), m.x != 0), + identical(as.logical(lx.x), as.logical(m.x)), + identical(as.mat(l10), m.x[1:10, 1:10] != 0), + identical(as.mat(l3 ), m.x[1:3, ] != 0) + ) > > ##-- Sub*assignment* with repeated / duplicated index: > A <- Matrix(0,4,3) ; A[c(1,2,1), 2] <- 1 ; A 4 x 3 sparse Matrix of class "dgCMatrix" [1,] . 1 . [2,] . 1 . [3,] . . . [4,] . . . > B <- A; B[c(1,2,1), 2] <- 1:3; B 4 x 3 sparse Matrix of class "dgCMatrix" [1,] . 3 . [2,] . 2 . [3,] . . . [4,] . . . > stopifnot(identical(unname(as.matrix(A)), + local({a <- matrix(0,4,3); a[c(1,2,1), 2] <- 1 ; a})), + identical(unname(as.matrix(B)), + local({a <- matrix(0,4,3); a[c(1,2,1), 2] <- 1:3; a}))) > > > ## used to fail > n <- 5 ## or much larger > sm <- new("dsTMatrix", i=as.integer(1),j=as.integer(1), + Dim=as.integer(c(n,n)), x = 1) > (cm <- as(sm, "CsparseMatrix")) 5 x 5 sparse Matrix of class "dsCMatrix" [1,] . . . . . [2,] . 1 . . . [3,] . . . . . [4,] . . . . . [5,] . . . . . > sm[2,] [1] 0 1 0 0 0 > stopifnot(sm[2,] == c(0:1, rep.int(0,ncol(sm)-2)), + sm[2,] == cm[2,], + sm[,3] == sm[3,], + all(sm[,-(1:3)] == t(sm[-(1:3),])), # all() + all(sm[,-(1:3)] == 0) + ) Warning messages: 1: Ambiguous method selection for "==", target "dgTMatrix#dgTMatrix" (the first of the signatures shown will be used) sparseMatrix#sparseMatrix dMatrix#dMatrix in: .findInheritedMethods(classes, fdef, mtable) 2: Ambiguous method selection for "==", target "dgTMatrix#numeric" (the first of the signatures shown will be used) dMatrix#numeric sparseMatrix#numeric in: .findInheritedMethods(classes, fdef, mtable) > > ### Diagonal -- Sparse: > m0 <- Diagonal(5) > (m1 <- as(m0, "sparseMatrix")) # dtTMatrix 5 x 5 sparse Matrix of class "dtTMatrix" [1,] 1 . . . . [2,] . 1 . . . [3,] . . 1 . . [4,] . . . 1 . [5,] . . . . 1 > (m2 <- as(m0, "CsparseMatrix")) # dtCMatrix (with an irrelevant warning) 5 x 5 sparse Matrix of class "dtCMatrix" [1,] 1 . . . . [2,] . 1 . . . [3,] . . 1 . . [4,] . . . 1 . [5,] . . . . 1 Warning message: Ambiguous method selection for "coerce", target "ddiMatrix#CsparseMatrix" (the first of the signatures shown will be used) diagonalMatrix#CsparseMatrix ddenseMatrix#CsparseMatrix in: .findInheritedMethods(signature, fdef, mtable = allmethods, table = mlist, > m1g <- as(m1, "generalMatrix") > stopifnot(is(m1g, "dgTMatrix")) > assert.EQ.mat(m2[1:3,], diag(5)[1:3,]) > assert.EQ.mat(m2[,c(4,1)], diag(5)[,c(4,1)]) > stopifnot(identical(m2[1:3,], as(m1[1:3,], "CsparseMatrix")), + identical(Matrix:::uniqTsparse(m1[, c(4,2)]), + Matrix:::uniqTsparse(as(m2[, c(4,2)], "TsparseMatrix"))) + )## failed in 0.9975-11 > > M <- m0; M[1,] <- 0 > stopifnot(identical(M, Diagonal(x=c(0, rep(1,4))))) > M <- m0; M[,3] <- 3 ; M ; stopifnot(is(M, "sparseMatrix"), M[,3] == 3) 5 x 5 sparse Matrix of class "dgTMatrix" [1,] 1 . 3 . . [2,] . 1 3 . . [3,] . . 3 . . [4,] . . 3 1 . [5,] . . 3 . 1 > validObject(M) [1] TRUE > M <- m0; M[1:3, 3] <- 0 ;M 5 x 5 diagonal matrix of class "ddiMatrix" [,1] [,2] [,3] [,4] [,5] [1,] 1 . . . . [2,] . 1 . . . [3,] . . 0 . . [4,] . . . 1 . [5,] . . . . 1 Warning message: Ambiguous method selection for "diag", target "ddiMatrix" (the first of the signatures shown will be used) diagonalMatrix ddenseMatrix in: .findInheritedMethods(classes, fdef, mtable) > T <- m0; T[1:3, 3] <- 10 > stopifnot(identical(M, Diagonal(x=c(1,1, 0, 1,1))), + is(T, "triangularMatrix"), identical(T[,3], c(10,10,10,0,0))) > > M <- m1; M[1,] <- 0 ; M ; assert.EQ.mat(M, diag(c(0,rep(1,4))), tol=0) 5 x 5 sparse Matrix of class "dtTMatrix" [1,] . . . . . [2,] . 1 . . . [3,] . . 1 . . [4,] . . . 1 . [5,] . . . . 1 > M <- m1; M[,3] <- 3 ; stopifnot(is(M,"sparseMatrix"), M[,3] == 3) > validObject(M) [1] TRUE > M <- m1; M[1:3, 3] <- 0 ;M 5 x 5 sparse Matrix of class "dtTMatrix" [1,] 1 . . . . [2,] . 1 . . . [3,] . . . . . [4,] . . . 1 . [5,] . . . . 1 > assert.EQ.mat(M, diag(c(1,1, 0, 1,1)), tol=0) > T <- m1; T[1:3, 3] <- 10; validObject(T) [1] TRUE > stopifnot(is(T, "dtTMatrix"), identical(T[,3], c(10,10,10,0,0))) > > M <- m2; M[1,] <- 0 ; M ; assert.EQ.mat(M, diag(c(0,rep(1,4))), tol=0) 5 x 5 sparse Matrix of class "dtCMatrix" [1,] . . . . . [2,] . 1 . . . [3,] . . 1 . . [4,] . . . 1 . [5,] . . . . 1 > M <- m2; M[,3] <- 3 ; stopifnot(is(M,"sparseMatrix"), M[,3] == 3) > validObject(M) [1] TRUE > M <- m2; M[1:3, 3] <- 0 ;M 5 x 5 sparse Matrix of class "dtCMatrix" [1,] 1 . . . . [2,] . 1 . . . [3,] . . . . . [4,] . . . 1 . [5,] . . . . 1 > assert.EQ.mat(M, diag(c(1,1, 0, 1,1)), tol=0) > T <- m2; T[1:3, 3] <- 10; validObject(T) [1] TRUE > stopifnot(is(T, "dtCMatrix"), identical(T[,3], c(10,10,10,0,0))) > > > ## --- negative indices ---------- > mc <- mC[1:5, 1:7] > mt <- mT[1:5, 1:7] > ## sub matrix > assert.EQ.mat(mC[1:2, 0:3], mm[1:2, 0:3]) # test 0-index > stopifnot(identical(mc[-(3:5), 0:2], mC[1:2, 0:2]), + identical(mt[-(3:5), 0:2], mT[1:2, 0:2]), + identical(mC[2:3, 4], mm[2:3, 4])) > assert.EQ.mat(mC[1:2,], mm[1:2,]) > ## sub vector > stopifnot(identical4(mc[-(1:4), ], mC[5, 1:7], + mt[-(1:4), ], mT[5, 1:7])) > stopifnot(identical4(mc[-(1:4), -(2:4)], mC[5, c(1,5:7)], + mt[-(1:4), -(2:4)], mT[5, c(1,5:7)])) > > ## mixing of negative and positive must give error > assertError(mT[-1:1,]) > > ## Sub *Assignment* ---- now works (partially): > mt0 <- mt > mt[1, 4] <- -99 > mt[2:3, 1:6] <- 0 > mt 5 x 7 sparse Matrix of class "dgTMatrix" [1,] . . . -99 . . 241 [2,] . . . . . . . [3,] . . . . . . 243 [4,] . . . . . . . [5,] . 45 . . . . . > m2 <- mt+mt > m2[1,4] <- -200 > m2[c(1,3), c(5:6,2)] <- 1:6 > stopifnot(m2[1,4] == -200, + as.vector(m2[c(1,3), c(5:6,2)]) == 1:6) > mt[,3] <- 30 > mt[2:3,] <- 250 > mt[1:5 %% 2 == 1, 3] <- 0 > mt[3:1, 1:7 > 5] <- 0 > mt 5 x 7 sparse Matrix of class "dgTMatrix" [1,] . . . -99 . . . [2,] 250 250 250 250 250 . . [3,] 250 250 . 250 250 . . [4,] . . 30 . . . . [5,] . 45 . . . . . > > tt <- as(mt,"matrix") > ii <- c(0,2,5) > jj <- c(2:3,5) > tt[ii, jj] <- 1:6 # 0 is just "dropped" > mt[ii, jj] <- 1:6 > assert.EQ.mat(mt, tt) > > mt[1:5, 2:6] 5 x 5 sparse Matrix of class "dgTMatrix" [1,] . . -99 . . [2,] 1 3 250 5 . [3,] 250 . 250 250 . [4,] . 30 . . . [5,] 2 4 . 6 . > as((mt0 - mt)[1:5,], "dsparseMatrix")# [1,5] and lines 2:3 5 x 7 sparse Matrix of class "dgCMatrix" [1,] . . . 220 . . 241 [2,] -250 41 -3 -250 -5 202 . [3,] -247 -250 . -250 -250 . 243 [4,] . . -30 . . . . [5,] . 43 -4 . -6 . . Warning message: Ambiguous method selection for "-", target "dgTMatrix#dgTMatrix" (the first of the signatures shown will be used) sparseMatrix#sparseMatrix dMatrix#dMatrix in: .findInheritedMethods(classes, fdef, mtable) > > mt[c(2,4), ] <- 0; stopifnot(as(mt[c(2,4), ],"matrix") == 0) > mt[2:3, 4:7] <- 33 > validObject(mt) [1] TRUE > mt 5 x 7 sparse Matrix of class "dgTMatrix" [1,] . . . -99 . . . [2,] . . . 33 33 33 33 [3,] 250 250 . 33 33 33 33 [4,] . . . . . . . [5,] . 2 4 . 6 . . > > mc[1,4] <- -99 ; stopifnot(mc[1,4] == -99) > mc[1,4] <- 00 ; stopifnot(mc[1,4] == 00) > mc[1,4] <- -99 ; stopifnot(mc[1,4] == -99) > mc[1:2,4:3] <- 4:1; stopifnot(as.matrix(mc[1:2,4:3]) == 4:1) > > mc[-1, 3] <- -2:1 # 0 should not be entered; 'value' recycled > mt[-1, 3] <- -2:1 > stopifnot(mc@x != 0, mt@x != 0, + mc[-1,3] == -2:1, mt[-1,3] == -2:1) ## failed earlier > > mc0 <- mc > mt0 <- as(mc0, "TsparseMatrix") > m0 <- as(mc0, "matrix") > set.seed(1) > for(i in 1:50) { + mc <- mc0; mt <- mt0 ; m <- m0 + ev <- 1:5 %% 2 == round(runif(1))# 0 or 1 + j <- sample(ncol(mc), 1 + round(runif(1))) + nv <- rpois(sum(ev) * length(j), lambda = 1) + mc[ev, j] <- nv + m[ev, j] <- nv + mt[ev, j] <- nv + if(i %% 10 == 1) print(mc[ev,j, drop = FALSE]) + stopifnot(as.vector(mc[ev, j]) == nv, ## failed earlier... + as.vector(mt[ev, j]) == nv) + validObject(mc) ; assert.EQ.mat(mc, m) + validObject(mt) ; assert.EQ.mat(mt, m) + } [1,] 2 [2,] . [1,] 2 [2,] 1 [1,] 1 . [2,] . . [3,] 1 . [1,] 1 [2,] 1 [3,] 1 [1,] . [2,] 3 [3,] 1 > > mc # no longer has non-structural zeros 5 x 7 sparse Matrix of class "dgCMatrix" [1,] . . 2 4 . . 241 [2,] 1 42 -2 3 . 1 . [3,] 3 . -1 . . . 243 [4,] 1 . . . . 1 . [5,] . 45 1 . . . . > mc[ii, jj] <- 1:6 > mc[c(2,5), c(3,5)] <- 3.2 > validObject(mc) [1] TRUE > m. <- mc > mc[4,] <- 0 > mc 5 x 7 sparse Matrix of class "dgCMatrix" [1,] . . 2.0 4 . . 241 [2,] 1 1 3.2 3 3.2 1 . [3,] 3 . -1.0 . . . 243 [4,] . . . . . . . [5,] . 2 3.2 . 3.2 . . > > H <- Hilbert(9) > Hc <- as(round(H, 3), "dsCMatrix")# a sparse matrix with no 0 ... > (trH <- tril(Hc[1:5, 1:5])) 5 x 5 sparse Matrix of class "dtCMatrix" [1,] 1.000 . . . . [2,] 0.500 0.333 . . . [3,] 0.333 0.250 0.200 . . [4,] 0.250 0.200 0.167 0.143 . [5,] 0.200 0.167 0.143 0.125 0.111 > stopifnot(is(trH, "triangularMatrix"), trH@uplo == "L") > > i <- c(1:2, 4, 6:7); j <- c(2:4,6) > H[i,j] <- 0 > (H. <- round(as(H, "sparseMatrix"), 3)[ , 2:7]) 9 x 6 sparse Matrix of class "dgCMatrix" [1,] . . . 0.200 . 0.143 [2,] . . . 0.167 . 0.125 [3,] 0.250 0.200 0.167 0.143 0.125 0.111 [4,] . . . 0.125 . 0.100 [5,] 0.167 0.143 0.125 0.111 0.100 0.091 [6,] . . . 0.100 . 0.083 [7,] . . . 0.091 . 0.077 [8,] 0.111 0.100 0.091 0.083 0.077 0.071 [9,] 0.100 0.091 0.083 0.077 0.071 0.067 > Hc. <- Hc > Hc.[i,j] <- 0 ## now "works", but setting "non-structural" 0s > stopifnot(as.matrix(Hc.[i,j]) == 0) > Hc.[, 1:6] 9 x 6 sparse Matrix of class "dgCMatrix" [1,] 1.000 0.000 0.000 0.000 0.200 0.000 [2,] 0.500 0.000 0.000 0.000 0.167 0.000 [3,] 0.333 0.250 0.200 0.167 0.143 0.125 [4,] 0.250 0.000 0.000 0.000 0.125 0.000 [5,] 0.200 0.167 0.143 0.125 0.111 0.100 [6,] 0.167 0.000 0.000 0.000 0.100 0.000 [7,] 0.143 0.000 0.000 0.000 0.091 0.000 [8,] 0.125 0.111 0.100 0.091 0.083 0.077 [9,] 0.111 0.100 0.091 0.083 0.077 0.071 > > ## an example that failed for a long time > sy3 <- new("dsyMatrix", Dim = as.integer(c(2, 2)), x = c(14, -1, 2, -7)) > validObject(dm <- kronecker(Diagonal(2), sy3))# now sparse with new kronecker [1] TRUE Warning message: Ambiguous method selection for "kronecker", target "dtTMatrix#dsTMatrix" (the first of the signatures shown will be used) TsparseMatrix#TsparseMatrix dsparseMatrix#dsparseMatrix in: .findInheritedMethods(classes, fdef, mtable) > dm <- Matrix(as.matrix(dm))# -> "dsyMatrix" > (s2 <- as(dm, "sparseMatrix")) 4 x 4 sparse Matrix of class "dsCMatrix" [1,] 14 2 . . [2,] 2 -7 . . [3,] . . 14 2 [4,] . . 2 -7 > validObject(st <- as(s2, "TsparseMatrix")) [1] TRUE > stopifnot(is(s2, "symmetricMatrix"), + is(st, "symmetricMatrix")) > validObject(s.32 <- st[1:3,1:2]) ## 3 x 2 - and *not* dsTMatrix [1] TRUE > validObject(s2.32 <- s2[1:3,1:2]) [1] TRUE > I <- c(1,4:3) > stopifnot(is(s2.32, "generalMatrix"), + is(s.32, "generalMatrix"), + identical(as.mat(s.32), as.mat(s2.32)), + identical3(dm[1:3,-1], asD(s2[1:3,-1]), asD(st[1:3,-1])), + identical4(2, dm[4,3], s2[4,3], st[4,3]), + identical3(diag(dm), diag(s2), diag(st)), + is((cI <- s2[I,I]), "dsCMatrix"), + is((tI <- st[I,I]), "dsTMatrix"), + identical4(as.mat(dm)[I,I], as.mat(dm[I,I]), as.mat(tI), as.mat(cI)) + ) > > ## now sub-assign and check for consistency > ## symmetric subassign should keep symmetry > st[I,I] <- 0; validObject(st); stopifnot(is(st,"symmetricMatrix")) [1] TRUE > s2[I,I] <- 0; validObject(s2); stopifnot(is(s2,"symmetricMatrix")) [1] TRUE > ## > m <- as.mat(st) > m[2:1,2:1] <- 4:1 > st[2:1,2:1] <- 4:1 > s2[2:1,2:1] <- 4:1 > stopifnot(identical(m, as.mat(st)), + 1:4 == as.vector(s2[1:2,1:2]), + identical(m, as.mat(s2))) > > ## now a slightly different situation for 's2' (had bug) > s2 <- as(dm, "sparseMatrix") > s2[I,I] <- 0; diag(s2)[2:3] <- -(1:2) > stopifnot(is(s2,"symmetricMatrix"), diag(s2) == c(0:-2,0)) > t2 <- as(s2, "TsparseMatrix") > m <- as.mat(s2) > s2[2:1,2:1] <- 4:1 > t2[2:1,2:1] <- 4:1 > m[2:1,2:1] <- 4:1 > assert.EQ.mat(t2, m) > assert.EQ.mat(s2, m) > ## and the same (for a different s2 !) > s2[2:1,2:1] <- 4:1 > t2[2:1,2:1] <- 4:1 > assert.EQ.mat(t2, m)# ok > assert.EQ.mat(s2, m)# failed in 0.9975-8 > > > ## m[cbind(i,j)] <- value: > m.[ cbind(3:5, 1:3) ] <- 1:3 > stopifnot(m.[3,1] == 1, m.[4,2] == 2) > x.x[ cbind(2:6, 2:6)] <- 12:16 > validObject(x.x) [1] TRUE > stopifnot(class(x.x) == "dsCMatrix", + 12:16 == as.mat(x.x)[cbind(2:6, 2:6)]) > (ne1 <- (mc - m.) != 0) 5 x 7 sparse Matrix of class "lgCMatrix" [1,] . . . . . . . [2,] . . . . . . . [3,] | . . . . . . [4,] | | . . . | . [5,] . . | . . . . Warning message: Ambiguous method selection for "!=", target "dgCMatrix#numeric" (the first of the signatures shown will be used) dMatrix#numeric sparseMatrix#numeric in: .findInheritedMethods(classes, fdef, mtable) > stopifnot(identical(ne1, 0 != abs(mc - m.))) Warning message: Ambiguous method selection for "!=", target "numeric#dgCMatrix" (the first of the signatures shown will be used) numeric#dMatrix numeric#sparseMatrix in: .findInheritedMethods(classes, fdef, mtable) > (ge <- m. >= mc) # contains "=" -> result is dense 5 x 7 Matrix of class "lgeMatrix" [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE [2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE [3,] FALSE TRUE TRUE TRUE TRUE TRUE TRUE [4,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE [5,] TRUE TRUE FALSE TRUE TRUE TRUE TRUE > ne. <- mc != m. # was wrong (+ warning) > stopifnot(identical(!(m. < mc), m. >= mc), + identical(m. < mc, as(!ge, "sparseMatrix")), + identical(ne., Matrix:::drop0(ne1))) > > (M3 <- Matrix(upper.tri(matrix(, 3, 3)))) # ltC; indexing used to fail 3 x 3 sparse Matrix of class "ltCMatrix" [1,] . | | [2,] . . | [3,] . . . > T3 <- as(M3, "TsparseMatrix") > stopifnot(identical(drop(M3), M3), + identical4(drop(M3[,2, drop = FALSE]), M3[,2, drop = TRUE], + drop(T3[,2, drop = FALSE]), T3[,2, drop = TRUE]), + is(T3, "triangularMatrix"), + !is(T3[,2, drop=FALSE], "triangularMatrix") + ) > > cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' Time elapsed: 10.299 0.184 11.314 0 0 >