#### All Methods in relation with the sparseVector (sub)classes # atomicVector : classUnion (logical,integer,double,....) setAs("atomicVector", "sparseVector", function(from) { n <- length(from) r <- new(paste(.V.kind(from), "sparseVector", sep=''), length = n) ii <- from != 0 r@x <- from[ii] r@i <- seq_len(n)[ii] r }) for(T in c("d","i","l","z")) { setAs("xsparseVector", paste(T, "sparseVector", sep=''), function(from) { from@x <- as(from@x, .type.kind[T]) ## and now "the hack": class(from) <- paste(T, "sparseVector", sep='') from }) } setAs("sparseVector", "nsparseVector", function(from) { if(any(is.na(from@x))) stop("cannot coerce 'NA's to \"nsparseVector\"") new("nsparseVector", i = from@i, length = from@length) }) sp2vec <- function(x, mode = .type.kind[substr(cl, 1,1)]) { cl <- class(x) r <- vector(mode, x@length) r[x@i] <- if(cl != "nsparseVector") { # cheap test for 'has x slot' if(is(x@x, mode)) x@x else as(x@x, mode) } else TRUE r } setAs("sparseVector", "vector", function(from) sp2vec(from)) setMethod("as.vector", signature(x = "sparseVector", mode = "missing"), sp2vec) setMethod("as.vector", signature(x = "sparseVector", mode = "character"), sp2vec) setMethod("as.numeric", "sparseVector", function(x) sp2vec(x, mode = "double")) ## the "catch all remaining" method: setAs("ANY", "sparseVector", function(from) as(as.vector(from), "sparseVector")) setAs("diagonalMatrix", "sparseVector", function(from) { kind <- .M.kind(from) ## currently only "l" and "d" --> have 'x' n <- nrow(from) new(paste(kind, "sparseVector", sep=''), length = n, # 1-based indexing i = as.integer(seq(1L, by = n+1, length.out = n)), x = if(from@diag != "U") from@x else switch(kind, "d" = 1, "l" = TRUE, "i" = 1L, "z" = 1+0i)) }) setAs("sparseMatrix", "sparseVector", function(from) as(as(from, "TsparseMatrix"), "sparseVector")) setAs("TsparseMatrix", "sparseVector", function(from) { d <- dim(from) n <- d[1] * d[2] # length of vector kind <- .M.kind(from) if(is_duplicatedT(from, nr = d[1])) from <- uniqTsparse(from) r <- new(paste(kind, "sparseVector", sep=''), length = n) r@i <- 1L + from@i + d[1] * from@j if(kind != "n") ## have 'x' slot r@x <- from@x r }) ## TODO -- also want (sparseVector, dim) |---> sparseMatrix ## because of (nrow,ncol) specification can not (?) use as(.). ## Hence use Matrix(.) ? or my spMatrix(.) ? ## For now, define this utility function: spV2M <- function (x, nrow, ncol, byrow = FALSE) { ## Purpose: sparseVector --> sparseMatrix constructor ## ---------------------------------------------------------------------- ## Arguments: x: "sparseVector" object ## nrow, ncol, byrow: as for matrix() or Matrix() ## ---------------------------------------------------------------------- ## Author: Martin Maechler, Date: 11 May 2007 cx <- class(x) stopifnot(extends(cx, "sparseVector")) if(!missing(ncol)) { ncol <- as.integer(ncol) if(ncol <= 0) stop("'ncol' must be >= 1") } if(!missing(nrow)) { nrow <- as.integer(nrow) if(nrow <= 0) stop("'nrow' must be >= 1") } n <- length(x) if(missing(nrow)) { if(missing(ncol)) { ## both missing: --> (n x 1) ncol <- 1L nrow <- n } else { if(n %% ncol != 0) warning("'ncol' is not a factor of length(x)") nrow <- as.integer(ceiling(n / ncol)) } } else { if(missing(ncol)) { if(n %% nrow != 0) warning("'nrow' is not a factor of length(x)") ncol <- as.integer(ceiling(n / nrow)) } else { ## both nrow and ncol specified if(ncol * nrow < n) stop("nrow * ncol < length(x)") if(ncol * nrow != n) warning("nrow * ncol != length(x)") } } ## now nrow * ncol >= n ## ~~~~~~~~~~~~~~~~ cld <- getClassDef(cx) kind <- .M.kindC(cld) # "d", "n", "l", "z", ... has.x <- kind != "n" r <- new(paste(kind,"gTMatrix", sep=''), Dim = c(nrow, ncol)) ## now "compute" the (i,j,x) slots given x@(i,x) i0 <- x@i - 1L if(byrow) { r@j <- i0 %% ncol r@i <- i0 %/% ncol } else { # default{byrow = FALSE} r@i <- i0 %% nrow r@j <- i0 %/% nrow } if(has.x) r@x <- x@x r } setMethod("length", "sparseVector", function(x) x@length) setMethod("show", signature(object = "sparseVector"), function(object) { n <- object@length cl <- class(object) cat(sprintf('sparse vector (nnz/length = %d/%d) of class "%s"\n', length(object@i), n, cl)) maxp <- max(1, getOption("max.print")) if(n <= maxp) { prSpVector(object, maxp = maxp) } else { # n > maxp : will cut length of what we'll display : ## cannot easily show head(.) & tail(.) because of "[1] .." printing of tail prSpVector(object[seq_len(maxp)], maxp = maxp) cat(" ............................", "\n ........suppressing ", n - maxp, " entries in show(); maybe adjust 'options(max.print= *)'", "\n ............................\n\n", sep='') } invisible(object) }) prSpVector <- function(x, digits = getOption("digits"), maxp = getOption("max.print"), zero.print = ".") { cld <- getClassDef(cl <- class(x)) stopifnot(extends(cld, "sparseVector"), maxp >= 1) if(is.logical(zero.print)) zero.print <- if(zero.print) "0" else " " ## kind <- .M.kindC(cld) ## has.x <- kind != "n" n <- x@length if(n > maxp) {# n > maxp =: nn : will cut length of what we'll display : x <- x[seq_len(maxp)] # need "[" to work ... n <- as.integer(maxp) } xi <- x@i logi <- extends(cld, "lsparseVector") || extends(cld, "nsparseVector") cx <- if(logi) rep.int("N", n) else character(n) cx[ -xi ] <- zero.print cx[ xi ] <- { if(logi) "|" else ## numeric (or --not yet-- complex): 'has.x' in any cases format(x@x, digits = digits) } ## right = TRUE : cheap attempt to get better "." alignment print(cx, quote = FALSE, right = TRUE, max = maxp) invisible(x) # TODO? in case of n > maxp, "should" return original x } ## This is a simplified intI() {-> ./Tsparse.R } -- for sparseVector indexing: intIv <- function(i, n) { ## Purpose: translate numeric | logical index into 1-based integer ## -------------------------------------------------------------------- ## Arguments: i: index vector (numeric | logical) ## n: array extent { == length(.) } if(missing(i)) seq_len(n) else if(is(i, "numeric")) { storage.mode(i) <- "integer" if(any(i < 0L)) { if(any(i > 0L)) stop("you cannot mix negative and positive indices") seq_len(n)[i] } else { if(length(i) && max(i) > n) stop("indexing out of range 0:",n) if(any(z <- i == 0)) i <- i[!z] i } } else if (is(i, "logical")) { seq_len(n)[i] } else stop("index must be numeric or logical for 'sparseVector' indexing") } setMethod("[", signature(x = "sparseVector", i = "index"), function (x, i, j, drop) { cld <- getClassDef(class(x)) has.x <- !extends(cld, "nsparseVector") n <- x@length ii <- intIv(i, n) anyDup <- any(iDup <- duplicated(ii)) m <- match(x@i, ii, nomatch = 0) sel <- m > 0L x@length <- length(ii) x@i <- m[sel] if(anyDup) { i.i <- match(ii[iDup], ii) jm <- lapply(i.i, function(.) which(. == m)) sel <- c(which(sel), unlist(jm)) x@i <- c(x@i, rep.int(which(iDup), sapply(jm, length))) } if (has.x) x@x <- x@x[sel] x }) ## This is much analogous to replTmat in ./Tsparse.R: replSPvec <- function (x, i, value) { n <- x@length ii <- intIv(i, n) lenRepl <- length(ii) lenV <- length(value) if(lenV == 0) { if(lenRepl != 0) stop("nothing to replace with") else return(x) } ## else: lenV := length(value) > 0 if(lenRepl %% lenV != 0) stop("number of items to replace is not a multiple of replacement length") anyDup <- any(duplicated(ii)) if(anyDup) { ## multiple *replacement* indices: last one wins ## TODO: in R 2.6.0 use duplicate(*, fromLast=TRUE) ir <- lenRepl:1 keep <- match(ii, ii[ir]) == ir ii <- ii[keep] lenV <- length(value <- rep(value, length = lenRepl)[keep]) lenRepl <- length(ii) } cld <- getClassDef(class(x)) has.x <- !extends(cld, "nsparseVector") m <- match(x@i, ii, nomatch = 0) sel <- m > 0L ## the simplest case if(all0(value)) { ## just drop the non-zero entries if(any(sel)) { ## non-zero there x@i <- x@i[!sel] if(has.x) x@x <- x@x[!sel] } return(x) } ## else -- some( value != 0 ) -- if(lenV > lenRepl) stop("too many replacement values") else if(lenV < lenRepl) value <- rep(value, length = lenRepl) ## now: length(value) == lenRepl v0 <- is0(value) ## value[1:lenRepl]: which are structural 0 now, which not? if(any(sel)) { ## indices of non-zero entries -- WRT to subvector iN0 <- m[sel] ## == match(x@i[sel], ii) ## 1a) replace those that are already non-zero with new val. vN0 <- !v0[iN0] if(any(vN0) && has.x) x@x[sel][vN0] <- value[iN0[vN0]] ## 1b) replace non-zeros with 0 --> drop entries if(any(!vN0)) { i <- which(sel)[!vN0] if(has.x) x@x <- x@x[-i] x@i <- x@i[-i] } iI0 <- if(length(iN0) < lenRepl) seq_len(lenRepl)[-iN0] } else iI0 <- seq_len(lenRepl) if(length(iI0) && any(vN0 <- !v0[iI0])) { ## 2) add those that were structural 0 (where value != 0) ij0 <- iI0[vN0] x@i <- c(x@i, ii[ij0]) if(has.x) x@x <- c(x@x, value[ij0]) } x } setReplaceMethod("[", signature(x = "sparseVector", i = "index", j = "missing", value = "replValue"), replSPvec) ## a "method" for c(<(sparse)Vector>, <(sparse)Vector>): c2v <- function(x, y) { ## these as(., "sp..V..") check input implicitly: cx <- class(x <- as(x, "sparseVector")) cy <- class(y <- as(y, "sparseVector")) if(cx != cy) { ## find "common" class; result does have 'x' slot cxy <- c(cx,cy) commType <- { if(all(cxy %in% c("nsparseVector", "lsparseVector"))) "lsparseVector" else { # ==> "numeric" ("integer") or "complex" xslot1 <- function(u, cl.u) if(cl.u != "nsparseVector") u@x[1] else TRUE switch(typeof(xslot1(x, cx) + xslot1(y, cy)), ## "integer", "double", or "complex" "integer" = "isparseVector", "double" = "dsparseVector", "complex" = "zsparseVector") } } if(cx != commType) x <- as(x, commType) if(cy != commType) y <- as(y, commType) cx <- commType } ## now *have* common type -- transform 'x' into result: nx <- x@length x@length <- nx + y@length x@i <- c(x@i, nx + y@i) if(cx != "nsparseVector") x@x <- c(x@x, y@x) x } ### Group Methods (!) ## o "Ops" , "Arith", "Compare" : ---> in ./Ops.R