### Define Methods that can be inherited for all subclasses ## This replaces many "d..Matrix" -> "dgeMatrix" ones ## >> but << needs all sub(sub(sub)) classes of "ddenseMatrix" listed ## ----- in ../src/Mutils.c setAs("ddenseMatrix", "dgeMatrix", function(from) { if (class(from) != "dgeMatrix") .Call(dup_mMatrix_as_dgeMatrix, from) else from }) ## d(ouble) to l(ogical): setAs("dgeMatrix", "lgeMatrix", function(from) d2l_Matrix(from, "dgeMatrix")) setAs("dsyMatrix", "lsyMatrix", function(from) d2l_Matrix(from, "dsyMatrix")) setAs("dspMatrix", "lspMatrix", function(from) d2l_Matrix(from, "dspMatrix")) setAs("dtrMatrix", "ltrMatrix", function(from) d2l_Matrix(from, "dtrMatrix")) setAs("dtpMatrix", "ltpMatrix", function(from) d2l_Matrix(from, "dtpMatrix")) setAs("ddenseMatrix", "CsparseMatrix", function(from) { if (class(from) != "dgeMatrix") # don't lose symmetry/triangularity/... as_Csparse(from) else .Call(dense_to_Csparse, from) }) ## special case setAs("dgeMatrix", "dgCMatrix", function(from) .Call(dense_to_Csparse, from)) setAs("matrix", "CsparseMatrix", function(from) { if(is.numeric(from)) .Call(dense_to_Csparse, .Call(dup_mMatrix_as_dgeMatrix, from)) else if(is.logical(from)) ## FIXME: this works, but maybe wastefully as(Matrix(from, sparse=TRUE), "CsparseMatrix") else stop('not-yet-implemented coercion to "CsparseMatrix"') }) ## special case needed in the Matrix function setAs("matrix", "dgCMatrix", function(from) { storage.mode(from) <- "double" .Call(dense_to_Csparse, from) }) setAs("numeric", "CsparseMatrix", function(from) .Call(dense_to_Csparse, .Call(dup_mMatrix_as_dgeMatrix, from))) setMethod("as.numeric", signature(x = "ddenseMatrix"), function(x, ...) as(x, "dgeMatrix")@x) ## -- see also ./Matrix.R e.g., for a show() method ## These methods are the 'fallback' methods for all dense numeric ## matrices in that they simply coerce the ddenseMatrix to a ## dgeMatrix. Methods for special forms override these. setMethod("norm", signature(x = "ddenseMatrix", type = "missing"), function(x, type, ...) callGeneric(as(x, "dgeMatrix"))) setMethod("norm", signature(x = "ddenseMatrix", type = "character"), function(x, type, ...) callGeneric(as(x, "dgeMatrix"), type)) setMethod("rcond", signature(x = "ddenseMatrix", type = "missing"), function(x, type, ...) callGeneric(as(x, "dgeMatrix"))) setMethod("rcond", signature(x = "ddenseMatrix", type = "character"), function(x, type, ...) callGeneric(as(x, "dgeMatrix"), type)) ## Not really useful; now require *identical* class for result: ## setMethod("t", signature(x = "ddenseMatrix"), ## function(x) callGeneric(as(x, "dgeMatrix"))) setMethod("tcrossprod", signature(x = "ddenseMatrix", y = "missing"), function(x, y = NULL) callGeneric(as(x, "dgeMatrix"))) setMethod("crossprod", signature(x = "ddenseMatrix", y = "missing"), function(x, y = NULL) callGeneric(as(x, "dgeMatrix"))) setMethod("diag", signature(x = "ddenseMatrix"), function(x, nrow, ncol = n) callGeneric(as(x, "dgeMatrix"))) setMethod("solve", signature(a = "ddenseMatrix", b = "missing"), function(a, b, ...) callGeneric(as(a, "dgeMatrix"))) setMethod("solve", signature(a = "ddenseMatrix", b = "ANY"), function(a, b, ...) callGeneric(as(a, "dgeMatrix"), b)) ## General method for dense matrix multiplication in case specific methods ## have not been defined. setMethod("%*%", signature(x = "ddenseMatrix", y = "ddenseMatrix"), function(x, y) .Call(dgeMatrix_matrix_mm, .Call(dup_mMatrix_as_dgeMatrix, x), y, FALSE), valueClass = "dgeMatrix") setMethod("lu", signature(x = "ddenseMatrix"), function(x, ...) callGeneric(as(x, "dgeMatrix"))) setMethod("chol", signature(x = "ddenseMatrix", pivot = "ANY"), cholMat) setMethod("determinant", signature(x = "ddenseMatrix", logarithm = "missing"), function(x, logarithm, ...) callGeneric(as(x, "dgeMatrix"))) setMethod("determinant", signature(x = "ddenseMatrix", logarithm = "logical"), function(x, logarithm, ...) callGeneric(as(x, "dgeMatrix"), logarithm)) ## now done for "dMatrix": ## setMethod("expm", signature(x = "ddenseMatrix"), ## function(x) callGeneric(as(x, "dgeMatrix"))) setMethod("Schur", signature(x = "ddenseMatrix", vectors = "missing"), function(x, vectors, ...) callGeneric(as(x, "dgeMatrix"))) setMethod("Schur", signature(x = "ddenseMatrix", vectors = "logical"), function(x, vectors, ...) callGeneric(as(x, "dgeMatrix"), vectors)) setMethod("Math", signature(x = "ddenseMatrix"), function(x) callGeneric(as(x, "dgeMatrix"))) ### FIXME: band() et al should be extended from "ddense" to "dense" ! ### However, needs much work to generalize dup_mMatrix_as_dgeMatrix() ## NB: have extra tril(), triu() methods for symmetric ["dsy" and "dsp"] and ## for triangular ["dtr" and "dtp"] setMethod("tril", "ddenseMatrix", function(x, k = 0, ...) { k <- as.integer(k[1]) dd <- dim(x); sqr <- dd[1] == dd[2] stopifnot(-dd[1] <= k, k <= dd[1]) # had k <= 0 ## returns "lower triangular" if k <= 0 && sqr .Call(ddense_band, x, -dd[1], k) }) setMethod("triu", "ddenseMatrix", function(x, k = 0, ...) { k <- as.integer(k[1]) dd <- dim(x); sqr <- dd[1] == dd[2] stopifnot(-dd[1] <= k, k <= dd[1]) # had k >= 0 ## returns "upper triangular" if k >= 0 .Call(ddense_band, x, k, dd[2]) }) setMethod("band", "ddenseMatrix", function(x, k1, k2, ...) { k1 <- as.integer(k1[1]) k2 <- as.integer(k2[1]) dd <- dim(x); sqr <- dd[1] == dd[2] stopifnot(-dd[1] <= k1, k1 <= k2, k2 <= dd[1]) r <- .Call(ddense_band, x, k1, k2) if (k1 < 0 && k1 == -k2 && isSymmetric(x)) ## symmetric as(r, paste(.M.kind(x), "syMatrix", sep='')) else r })