#### "TsparseMatrix" : Virtual class of sparse matrices in triplet-format ## more efficient than going via Csparse: setAs("matrix", "TsparseMatrix", function(from) if(is.numeric(from)) mat2dgT(from) else if(is.logical(from)) as(Matrix(from, sparse=TRUE), "TsparseMatrix") else stop("not-yet-implemented coercion to \"TsparseMatrix\"")) ## in ../src/Tsparse.c : |-> cholmod_T -> cholmod_C -> chm_sparse_to_SEXP ## adjusted for triangular matrices not represented in cholmod .T.2.C <- function(from) .Call(Tsparse_to_Csparse, from, ## is(from, "triangularMatrix")) setAs("TsparseMatrix", "CsparseMatrix", .T.2.C) .T.2.n <- function(from) { if(is(from, "triangularMatrix")) # i.e. ?tTMatrix new("ntTMatrix", i = from@i, j = from@j, uplo = from@uplo, diag = from@diag, Dim = from@Dim, Dimnames = from@Dimnames) else if(is(from, "symmetricMatrix")) # i.e. ?sTMatrix new("nsTMatrix", i = from@i, j = from@j, uplo = from@uplo, Dim = from@Dim, Dimnames = from@Dimnames) else new("ngTMatrix", i = from@i, j = from@j, Dim = from@Dim, Dimnames = from@Dimnames) } setAs("TsparseMatrix", "nsparseMatrix", .T.2.n) setAs("TsparseMatrix", "nMatrix", .T.2.n) .T.2.l <- function(from) { cld <- getClassDef(class(from)) xx <- if(extends(cld, "nMatrix")) rep.int(TRUE, length(from@i)) else as.logical(from@x) if(extends(cld, "triangularMatrix")) # i.e. ?tTMatrix new("ltTMatrix", i = from@i, j = from@j, x = xx, uplo = from@uplo, diag = from@diag, Dim = from@Dim, Dimnames = from@Dimnames) else if(extends(cld, "symmetricMatrix")) # i.e. ?sTMatrix new("lsTMatrix", i = from@i, j = from@j, x = xx, uplo = from@uplo, Dim = from@Dim, Dimnames = from@Dimnames) else new("lgTMatrix", i = from@i, j = from@j, x = xx, Dim = from@Dim, Dimnames = from@Dimnames) } setAs("TsparseMatrix", "lsparseMatrix", .T.2.l) setAs("TsparseMatrix", "lMatrix", .T.2.l) ## Special cases ("d", "l", "n") %o% ("g", "s", "t") : ## used e.g. in triu() setAs("dgTMatrix", "dgCMatrix", function(from) .Call(Tsparse_to_Csparse, from, FALSE)) setAs("dsTMatrix", "dsCMatrix", function(from) .Call(Tsparse_to_Csparse, from, FALSE)) setAs("dtTMatrix", "dtCMatrix", function(from) .Call(Tsparse_to_Csparse, from, TRUE)) setAs("lgTMatrix", "lgCMatrix", function(from) .Call(Tsparse_to_Csparse, from, FALSE)) setAs("lsTMatrix", "lsCMatrix", function(from) .Call(Tsparse_to_Csparse, from, FALSE)) setAs("ltTMatrix", "ltCMatrix", function(from) .Call(Tsparse_to_Csparse, from, TRUE)) setAs("ngTMatrix", "ngCMatrix", function(from) .Call(Tsparse_to_Csparse, from, FALSE)) setAs("nsTMatrix", "nsCMatrix", function(from) .Call(Tsparse_to_Csparse, from, FALSE)) setAs("ntTMatrix", "ntCMatrix", function(from) .Call(Tsparse_to_Csparse, from, TRUE)) ### "[" : ### ----- ## Test for numeric/logical/character ## method-*internally* ; this is not strictly OO, but allows to use ## the following utility and hence much more compact code. ## Otherwise have to write methods for all possible combinations of ## (i , j) \in ## (numeric, logical, character, missing) x (numeric, log., char., miss.) intI <- function(i, n, dn, give.dn = TRUE) { ## Purpose: translate numeric | logical | character index ## into 0-based integer ## ---------------------------------------------------------------------- ## Arguments: i: index vector (numeric | logical | character) ## n: array extent { == dim(.) [margin] } ## dn: character col/rownames or NULL { == dimnames(.)[[margin]] } ## ---------------------------------------------------------------------- ## Author: Martin Maechler, Date: 23 Apr 2007 has.dn <- is.character(dn) DN <- has.dn && give.dn if(is(i, "numeric")) { storage.mode(i) <- "integer" if(any(i < 0L)) { if(any(i > 0L)) stop("you cannot mix negative and positive indices") i0 <- (0:(n - 1L))[i] } else { if(length(i) && max(i) > n) stop("indexing out of range 0:",n) if(any(z <- i == 0)) i <- i[!z] i0 <- i - 1L # transform to 0-indexing } if(DN) dn <- dn[i] } else if (is(i, "logical")) { i0 <- (0:(n - 1L))[i] if(DN) dn <- dn[i] } else { ## character if(!has.dn) stop("no 'dimnames[[.]]': cannot use character indexing") i0 <- match(i, dn) if(any(is.na(i0))) stop("invalid character indexing") if(DN) dn <- dn[i0] i0 <- i0 - 1L } if(!give.dn) i0 else list(i0 = i0, dn = dn) } .ind.prep <- function(xi, intIlist, iDup = duplicated(i0), anyDup = any(iDup)) { ## Purpose: do the ``common things'' for "*gTMatrix" indexing for 1 dim. ## and return match(.,.) + li = length of corresponding dimension ## ## xi = "x@i" ; intIlist = intI(i, dim(x)[margin], ....) i0 <- intIlist$i0 stopifnot(is.numeric(i0))# cheap fast check (i0 may have length 0 !) m <- match(xi, i0, nomatch=0) if(anyDup) { # assuming anyDup <- any(iDup <- duplicated(i0)) ## i0i: where in (non-duplicated) i0 are the duplicated ones i0i <- match(i0[iDup], i0) i.x <- which(iDup) - 1L jm <- lapply(i0i, function(.) which(. == m)) } c(list(m = m, li = length(i0), i0 = i0, anyDup = anyDup, dn = intIlist$dn), ## actually, iDup is rarely needed in calling code if(anyDup) list(iDup = iDup, i0i = i0i, i.x = i.x, jm = unlist(jm), i.xtra = rep.int(i.x, sapply(jm, length)))) } .ind.prep2 <- function(i, margin, di, dn) { ## Purpose: do the ``common things'' for "*gTMatrix" sub-assignment ## for 1 dimension, 'margin' , ## and return match(.,.) + li = length of corresponding dimension ## ## i is "index"; margin in {1,2}; ## di = dim(x) { used when i is not character } ## difference to .ind.prep(): use 1-indices; no match(xi,..), no dn at end intI(i, n = di[margin], dn = dn[[margin]], give.dn = FALSE) } ## Select rows setMethod("[", signature(x = "TsparseMatrix", i = "index", j = "missing", drop = "logical"), function (x, i, j, ..., drop) { ## select rows clx <- getClassDef(class(x)) has.x <- !extends(clx, "nsparseMatrix") x.sym <- extends(clx, "symmetricMatrix") x.tri <- extends(clx, "triangularMatrix") gDo <- (x.sym || (x.tri && x@diag == "U")) if(gDo) x <- as(x, paste(.M.kind(x, clx), "gTMatrix", sep='')) ip <- .ind.prep(x@i, intI(i, n = dim(x)[1], dimnames(x)[[1]])) Di1 <- ip$li drop.it <- drop && (Di1 == 1L || x@Dim[2] == 1L) if(x.tri && !drop.it && !gDo) # triangular, result not x <- as(x, paste(.M.kind(x, clx), "gTMatrix", sep='')) x@Dim[1] <- Di1 if(!is.null(ip$dn)) x@Dimnames[[1]] <- ip$dn sel <- ip$m > 0L x@i <- ip$m[sel] - 1L if(ip$anyDup) { ## duplicated rows selected: extend sel sel <- c(which(sel), ip$jm) x@i <- c(x@i, ip$i.xtra) } x@j <- x@j[sel] if (has.x) x@x <- x@x[sel] if (drop.it) drop(as(x,"matrix")) else x }) ## Select columns setMethod("[", signature(x = "TsparseMatrix", i = "missing", j = "index", drop = "logical"), function (x, i, j, ..., drop) { ## select columns clx <- getClassDef(class(x)) has.x <- !extends(clx, "nsparseMatrix") x.sym <- extends(clx, "symmetricMatrix") x.tri <- extends(clx, "triangularMatrix") gDo <- (x.sym || (x.tri && x@diag == "U")) if(gDo) x <- as(x, paste(.M.kind(x, clx), "gTMatrix", sep='')) ip <- .ind.prep(x@j, intI(j, n = dim(x)[2], dimnames(x)[[2]])) Di2 <- ip$li drop.it <- drop && (x@Dim[1] == 1L || Di2 == 1L) if(x.tri && !drop.it && !gDo) # triangular, result not x <- as(x, paste(.M.kind(x, clx), "gTMatrix", sep='')) x@Dim[2] <- Di2 if(!is.null(ip$dn)) x@Dimnames[[2]] <- ip$dn sel <- ip$m > 0L x@j <- ip$m[sel] - 1L if(ip$anyDup) { ## duplicated columns selected: extend sel sel <- c(which(sel), ip$jm) x@j <- c(x@j, ip$i.xtra) } x@i <- x@i[sel] if (has.x) x@x <- x@x[sel] if (drop.it) drop(as(x,"matrix")) else x }) ## [.data.frame has : drop = if (missing(i)) TRUE else length(cols) == 1) setMethod("[", signature(x = "TsparseMatrix", i = "index", j = "index", drop = "logical"), function (x, i, j, ..., drop) { ## (i,j, drop) all specified di <- dim(x) dn <- dimnames(x) clx <- getClassDef(class(x)) has.x <- !extends(clx, "nsparseMatrix") isSym <- extends(clx, "symmetricMatrix") if(isSym) { isSym <- length(i) == length(j) && mode(i) == mode(j) && all(i == j) ## result will *still* be symmetric --> keep symmetry! if(!isSym) ## result no longer symmetric -> to "generalMatrix" x <- as(x, paste(.M.kind(x, clx), "gTMatrix", sep='')) } else if(extends(clx, "triangularMatrix") && x@diag == "U") { x <- as(x, paste(.M.kind(x, clx), "gTMatrix", sep='')) } if(isSym) { ## has only stored "half" of the indices, ## OTOH, i === j, so only need one intI() call ip1 <- intI(i, n=di[1], dn[[1]]) # -> (i0, dn_1) anyDup <- any(iDup <- duplicated(ip1$i0)) ip1 <- .ind.prep(x@i, ip1, iDup=iDup, anyDup=anyDup) ip2 <- { if(anyDup) list(m = match(x@j, ip1$i0, nomatch=0), li = ip1$li) else .ind.prep(x@j, ip1, iDup=iDup, anyDup=anyDup) } if(!is.null(dn[[2]])) # fix result colnames ip2$dn <- dn[[2]][ip1$i0 + 1L] } else { ip1 <- .ind.prep(x@i, intI(i, n = di[1], dn= dn[[1]])) ij <- intI(j, n = di[2], dn= dn[[2]]) ip2 <- .ind.prep(x@j, ij) } nd <- c(ip1$li, ip2$li) x@Dim <- nd x@Dimnames <- list(ip1$dn, ip2$dn) if(isSym) { sel <- ip1$m & ip2$m ii <- ip1$m[sel] - 1L jj <- ip2$m[sel] - 1L if(anyDup) { ## careful algorithm --- TODO: in C sel <- which(sel) ## keep non-duplicated and "increment" for duplicated ones ij <- pmin(ii, jj) jj <- pmax(ii, jj) ; ii <- ij ## length(ii) == length(jj) == length(sel) _and_ ii <= jj ix <- ip1$i.x for(k in seq_along(ix)) { ## "recursively" add 1 row+column corresp. iDup[k] i0 <- ip1$i0i[k] -1L # the (0-ind)column we want to repl i.x <- ix[k] # < i0 e1 <- ii == i0 e2 <- jj == i0 j1 <- jj[e1] # >= ii[e1] == i0 j2 <- ii[e2] # <= jj[e2] == i0 < i.x ## now the "diagonal special": if(any(e1 & e2)) { ## (e1 & e2)[m] = TRUE <==> ii[m] == jj[m] == i0 isD <- e1[e2] # logical of same length as j2 stopifnot(sum(isD) == 1) j2[isD] <- i.x # instead of i0 } l1x <- j1 < i.x # & j12 <- j1[l1x] j11 <- j1[!l1x] # those >= i.x s1 <- sel[e1] ii <- c(ii, j2, j1[l1x], rep.int(i.x, length(j11))) jj <- c(jj, rep.int(ix[k], length(j2)+sum(l1x)), j11) sel <- c(sel, sel[e2], s1[l1x], s1[!l1x]) stopifnot(ii <= jj, length(sel) == length(ii)) } if(x@uplo == "U") { ## i <= j : upper triangle x@i <- ii x@j <- jj } else { ## i >= j : lower left triangle x@i <- jj x@j <- ii } } else { ## not any Dup if(x@uplo == "U") { ## i <= j : upper triangle x@i <- pmin(ii, jj) x@j <- pmax(ii, jj) } else { ## i >= j : lower left triangle x@i <- pmax(ii, jj) x@j <- pmin(ii, jj) } } } else if(!ip1$anyDup && !ip2$anyDup) { ## "normal case": no duplicated indices (and not symmetric) sel <- ip1$m & ip2$m x@i <- ip1$m[sel] - 1L x@j <- ip2$m[sel] - 1L } else { ## not Sym && (ip1$anyDup || ip2$anyDup) : ## duplicated rows or columns -- currently the cheap solution, ## Basically implement X[i,j] as X[i,] [,j] : ## FIXME: we are recomputing ip2 here ## - i - ------------------------------ sel <- ip1$m > 0L x@i <- ip1$m[sel] - 1L if(ip1$anyDup) { ## duplicated rows selected: extend sel sel <- c(which(sel), ip1$jm) x@i <- c(x@i, ip1$i.xtra) } x@j <- x@j[sel] if (has.x) x@x <- x@x[sel] ## - j - ------------------------------ ## ip2 <- .ind.prep(x@j, intI(j, n = di[2], dn = dn[[2]])) ## FIXME can we do better: current x@j is original x@j[sel] ip2 <- .ind.prep(x@j, ij) sel <- ip2$m > 0L x@j <- ip2$m[sel] - 1L if(ip2$anyDup) { ## duplicated columns selected: extend sel sel <- c(which(sel), ip2$jm) x@j <- c(x@j, ip2$i.xtra) } x@i <- x@i[sel] } if (has.x) x@x <- x@x[sel] if (drop && any(nd == 1)) drop(as(x, "matrix")) else x }) ## FIXME: Learn from .TM... below or rather .M.sub.i.2col(.) in ./Matrix.R ## ------ the following should be much more efficient than the ./Matrix.R code : if(FALSE) ## A[ ij ] where ij is (i,j) 2-column matrix : setMethod("[", signature(x = "TsparseMatrix", i = "matrix", j = "missing"),# drop="ANY" function (x, i, j, drop) { di <- dim(x) dn <- dimnames(x) ## TODO check i (= 2-column matrix of indices) --- ## as in .M.sub.i.2col() in ./Matrix.R j <- i[,2] i <- i[,1] if(is(x, "symmetricMatrix")) { isSym <- all(i == j) if(!isSym) x <- as(x, paste(.M.kind(x), "gTMatrix", sep='')) } else isSym <- FALSE if(isSym) { offD <- x@i != x@j ip1 <- .ind.prep(c(x@i,x@j[offD]), intI(i, n= di[1], dn=dn[[1]])) ip2 <- .ind.prep(c(x@j,x@i[offD]), intI(j, n= di[2], dn=dn[[2]])) } else { ip1 <- .ind.prep(x@i, intI(i, n = di[1], dn = dn[[1]])) ip2 <- .ind.prep(x@j, intI(j, n = di[2], dn = dn[[2]])) } stop("FIXME: NOT YET FINISHED IMPLEMENTATION") ## The M[i_vec, j_vec] had -- we need "its diagonal" : sel <- ip1$m & ip2$m if(isSym) { # only those corresponding to upper/lower triangle sel <- sel & (if(x@uplo == "U") ip1$m <= ip2$m else ip2$m <= ip1$m) } x@i <- ip1$m[sel] - 1L x@j <- ip2$m[sel] - 1L if (!is(x, "nsparseMatrix")) x@x <- c(x@x, if(isSym) x@x[offD])[sel] if (drop && any(nd == 1)) drop(as(x,"matrix")) else x }) ###========= Sub-Assignment aka *Replace*Methods ========================= ### FIXME: make this `very fast' for the very very common case of ### ----- M[i,j] <- v with i,j = length-1-numeric; v= length-1 number ### *and* M[i,j] == 0 previously ## workhorse for "[<-" : replTmat <- function (x, i, j, value) { di <- dim(x) dn <- dimnames(x) iMi <- missing(i) jMi <- missing(j) i1 <- if(iMi) 0:(di[1] - 1L) else .ind.prep2(i, 1, di, dn) i2 <- if(jMi) 0:(di[2] - 1L) else .ind.prep2(j, 2, di, dn) dind <- c(length(i1), length(i2)) # dimension of replacement region lenRepl <- prod(dind) lenV <- length(value) if(lenV == 0) { if(lenRepl != 0) stop("nothing to replace with") else return(x) } ## else: lenV := length(value) > 0 if(lenRepl %% lenV != 0) stop("number of items to replace is not a multiple of replacement length") if(!iMi && any(duplicated(i1))) { ## a bit faster than keep <- !rev(duplicated(rev(i1))) : ir <- dind[1]:1 ; keep <- match(i1, i1[ir]) == ir i1 <- i1[keep] lenV <- length(value <- rep(value, length = lenRepl)[keep]) dind[1] <- length(i1) lenRepl <- dind[1] * dind[2] } if(!jMi && any(duplicated(i2))) { ## a bit faster than keep <- !rev(duplicated(rev(i2))) : ir <- dind[2]:1 ; keep <- match(i2, i2[ir]) == ir i2 <- i2[keep] lenV <- length(value <- rep(value, length = lenRepl)[keep]) dind[2] <- length(i2) lenRepl <- dind[1] * dind[2] } clx <- class(x) clDx <- getClassDef(clx) # extends() , is() etc all use the class definition stopifnot(extends(clDx, "TsparseMatrix")) ## Tmatrix maybe non-unique, have an entry split into a sum of several ones: if(is_duplicatedT(x, nr = di[1])) x <- uniqTsparse(x) toGeneral <- FALSE if((sym.x <- extends(clDx, "symmetricMatrix"))) { r.sym <- dind[1] == dind[2] && all(i1 == i2) && (lenRepl == 1 || isSymmetric(value <- array(value, dim=dind))) if(r.sym) { ## result is *still* symmetric --> keep symmetry! ## now consider only those indices above / below diagonal: xU <- x@uplo == "U" useI <- if(xU) i1 <= i2 else i2 <= i1 i1 <- i1[useI] i2 <- i2[useI] ## select also the corresponding triangle if(lenRepl > 1) value <- value[(if(xU)upper.tri else lower.tri)(value, diag=TRUE)] } else toGeneral <- TRUE } else if((tri.x <- extends(clDx, "triangularMatrix"))) { xU <- x@uplo == "U" r.tri <- all(if(xU) i1 <= i2 else i2 <= i1) if(r.tri) { ## result is *still* triangular if(any(i1 == i2)) # diagonal will be changed x <- diagU2N(x) # keeps class (!) } else toGeneral <- TRUE } if(toGeneral) { # go to "generalMatrix" and continue x <- as(x, paste(.M.kind(x), "gTMatrix", sep='')) clDx <- getClassDef(clx <- class(x)) } get.ind.sel <- function(ii,ij) (match(x@i, ii, nomatch = 0) & match(x@j, ij, nomatch = 0)) ## sel[k] := TRUE iff k-th non-zero entry (typically x@x[k]) is to be replaced sel <- get.ind.sel(i1,i2) has.x <- "x" %in% slotNames(clDx) # === slotNames(x) ## the simplest case: for all Tsparse, even for i or j missing if(all0(value)) { ## just drop the non-zero entries if(any(sel)) { ## non-zero there x@i <- x@i[!sel] x@j <- x@j[!sel] if(has.x) x@x <- x@x[!sel] } return(x) } ## else -- some( value != 0 ) -- if(lenV > lenRepl) stop("too many replacement values") ## now have lenV <= lenRepl ## another simple, typical case: if(lenRepl == 1) { if(any(sel)) { ## non-zero there if(has.x) x@x[sel] <- value } else { ## new non-zero x@i <- c(x@i, i1) x@j <- c(x@j, i2) if(has.x) x@x <- c(x@x, value) } return(x) } if(sym.x && r.sym) # value already adjusted, see above lenRepl <- length(value) # shorter (since only "triangle") else if(lenV < lenRepl) value <- rep(value, length = lenRepl) ## now: length(value) == lenRepl v0 <- is0(value) ## value[1:lenRepl]: which are structural 0 now, which not? if(any(sel)) { ## the 0-based indices of non-zero entries -- WRT to submatrix non0 <- cbind(match(x@i[sel], i1), match(x@j[sel], i2)) - 1L iN0 <- 1L + encodeInd(non0, nr = dind[1]) ## 1a) replace those that are already non-zero with non-0 values vN0 <- !v0[iN0] if(any(vN0) && has.x) x@x[sel][vN0] <- value[iN0[vN0]] ## 1b) replace non-zeros with 0 --> drop entries if(any(!vN0)) { ii <- which(sel)[!vN0] if(has.x) x@x <- x@x[-ii] x@i <- x@i[-ii] x@j <- x@j[-ii] } iI0 <- if(length(iN0) < lenRepl) seq_len(lenRepl)[-iN0] # == complementInd(non0, dind) } else iI0 <- seq_len(lenRepl) if(length(iI0) && any(vN0 <- !v0[iI0])) { ## 2) add those that were structural 0 (where value != 0) ij0 <- decodeInd(iI0[vN0] - 1L, nr = dind[1]) x@i <- c(x@i, i1[ij0[,1] + 1L]) x@j <- c(x@j, i2[ij0[,2] + 1L]) if(has.x) x@x <- c(x@x, value[iI0[vN0]]) } x } ## A[ ij ] <- value, where ij is (i,j) 2-column matrix : ## ---------------- ./Matrix.R has a general cheap method ## This one should become as fast as possible: .TM.repl.i.2col <- function (x, i, value) { nA <- nargs() if(nA != 3) stop("nargs() = ", nA, " should never happen; please report.") ## else: nA == 3 i.e., M [ cbind(ii,jj) ] <- value if(is.logical(i)) { message(".TM.repl.i.2col(): drop 'matrix' case ...") i <- c(i) # drop "matrix" return( callNextMethod() ) } else if(!is.numeric(i) || ncol(i) != 2) stop("such indexing must be by logical or 2-column numeric matrix") if(!is.integer(i)) storage.mode(i) <- "integer" if(any(i < 0)) stop("negative values are not allowed in a matrix subscript") if(any(is.na(i))) stop("NAs are not allowed in subscripted assignments") if(any(i0 <- (i == 0))) # remove them i <- i[ - which(i0, arr.ind = TRUE)[,"row"], ] if(length(attributes(i)) > 1) # more than just 'dim'; simplify: will use identical attributes(i) <- list(dim = dim(i)) ## now have integer i >= 1 m <- nrow(i) if(m == 0) return(x) if(length(value) == 0) stop("nothing to replace with") ## mod.x <- .type.kind[.M.kind(x)] if(length(value) != m) { ## use recycling rules if(m %% length(value) != 0) warning("number of items to replace is not a multiple of replacement length") value <- rep(value, length = m) } clx <- class(x) clDx <- getClassDef(clx) # extends() , is() etc all use the class definition stopifnot(extends(clDx, "TsparseMatrix")) di <- dim(x) nr <- di[1] nc <- di[2] i1 <- i[,1] i2 <- i[,2] if(any(i1 > nr)) stop("row indices must be <= nrow(.) which is ", nr) if(any(i2 > nc)) stop("column indices must be <= ncol(.) which is ", nc) ## Tmatrix maybe non-unique, have an entry split into a sum of several ones: if(is_duplicatedT(x, nr = nr)) x <- uniqTsparse(x) toGeneral <- FALSE if((sym.x <- extends(clDx, "symmetricMatrix"))) { ## Tests to see if the assignments are symmetric as well r.sym <- all(i1 == i2) if(!r.sym) { # do have *some* Lower or Upper entries iL <- i1 > i2 iU <- i1 < i2 r.sym <- sum(iL) == sum(iU) # same number if(r.sym) { iLord <- order(i1[iL], i2[iL]) iUord <- order(i2[iU], i1[iU]) # row <-> col. ! r.sym <- { identical(i[iL, ][iLord,], i[iU, 2:1][iUord,]) && all(value[iL][iLord] == value[iU][iUord]) } } } if(r.sym) { ## result is *still* symmetric --> keep symmetry! ## message("keeping Tsparse matrix *symmetric* in sub-assignment") ## now consider only those indices above / below diagonal: xU <- x@uplo == "U" useI <- if(xU) i1 <= i2 else i2 <= i1 i1 <- i1[useI] i2 <- i2[useI] value <- value[useI] } else toGeneral <- TRUE } else if((tri.x <- extends(clDx, "triangularMatrix"))) { xU <- x@uplo == "U" r.tri <- all(if(xU) i1 <= i2 else i2 <= i1) if(r.tri) { ## result is *still* triangular if(any(i1 == i2)) # diagonal will be changed x <- diagU2N(x) # keeps class (!) } else toGeneral <- TRUE } if(toGeneral) { # go to "generalMatrix" and continue x <- as(x, paste(.M.kind(x), "gTMatrix", sep='')) clDx <- getClassDef(clx <- class(x)) } i <- i - 1L # 0-indexing ii.v <- encodeInd (i, nr) if(any(d <- duplicated(rev(ii.v)))) { # reverse: "last" duplicated FALSE warning("duplicate ij-entries in 'Matrix[ ij ] <- value'; using last") nd <- !rev(d) ## i <- i [nd, , drop=FALSE] ii.v <- ii.v [nd] value <- value[nd] } ii.x <- encodeInd2(x@i, x@j, nr) m1 <- match(ii.v, ii.x) i.repl <- !is.na(m1) # those that need to be *replaced* if(isN <- extends(clDx, "nMatrix")) { ## no 'x' slot isN <- all(value %in% c(FALSE, TRUE)) # will result remain "nMatrix" ? if(!isN) x <- as(x, paste(if(extends(clDx, "lMatrix")) "l" else "d", .sparse.prefixes[.M.shape(x)], "TMatrix", sep='')) } has.x <- !isN ## isN <===> "remains pattern matrix" <===> has no 'x' slot if(any(i.repl)) { ## some to replace at matching (@i, @j) if(has.x) x@x[m1[i.repl]] <- value[i.repl] else { # nMatrix ; eliminate entries that are set to FALSE; keep others if(any(isF <- !value[i.repl])) { ii <- m1[i.repl][isF] x@i <- x@i[ -ii] x@j <- x@j[ -ii] } } } if(!all(i.repl)) { ## some new entries i.j <- decodeInd(ii.v[!i.repl], nr) x@i <- c(x@i, i.j[,1]) x@j <- c(x@j, i.j[,2]) if(has.x) x@x <- c(x@x, value[!i.repl]) } x } setReplaceMethod("[", signature(x = "TsparseMatrix", i = "index", j = "missing", value = "replValue"), function (x, i, value) replTmat(x, i=i, value=value)) setReplaceMethod("[", signature(x = "TsparseMatrix", i = "missing", j = "index", value = "replValue"), function (x, j, value) replTmat(x, j=j, value=value)) setReplaceMethod("[", signature(x = "TsparseMatrix", i = "index", j = "index", value = "replValue"), replTmat) setReplaceMethod("[", signature(x = "TsparseMatrix", i = "matrix", j = "missing", value = "replValue"), .TM.repl.i.2col) setMethod("crossprod", signature(x = "TsparseMatrix", y = "missing"), function(x, y = NULL) { if (is(x, "symmetricMatrix")) { x <- .T.2.C(x) warning("crossprod(x) calculated as x %*% x for sparse, symmetric x") return(x %*% x) } .Call(Csparse_crossprod, x, trans = FALSE, triplet = TRUE) }) setMethod("tcrossprod", signature(x = "TsparseMatrix", y = "missing"), function(x, y = NULL) { .Call(Csparse_crossprod, x, trans = TRUE, triplet = TRUE) }) ## Must define methods for y = "missing" first so they have precedence ## (this will change in R-2.4.0). setMethod("crossprod", signature(x = "TsparseMatrix", y = "ANY"), function(x, y = NULL) callGeneric(.T.2.C(x), y)) setMethod("tcrossprod", signature(x = "TsparseMatrix", y = "ANY"), function(x, y = NULL) callGeneric(.T.2.C(x), y)) setMethod("%*%", signature(x = "TsparseMatrix", y = "ANY"), function(x, y) callGeneric(.T.2.C(x), y)) setMethod("%*%", signature(x = "ANY", y = "TsparseMatrix"), function(x, y) callGeneric(x, as(y, "CsparseMatrix"))) ## Not yet. Don't have methods for y = "CsparseMatrix" and general x #setMethod("%*%", signature(x = "ANY", y = "TsparseMatrix"), # function(x, y) callGeneric(x, as(y, "CsparseMatrix"))) setMethod("solve", signature(a = "TsparseMatrix", b = "ANY"), function(a, b) solve(as(a, "CsparseMatrix"), b)) setMethod("solve", signature(a = "TsparseMatrix", b = "missing"), function(a, b) solve(as(a, "CsparseMatrix"))) ## Want tril(), triu(), band() --- just as "indexing" --- ## return a "close" class: setMethod("tril", "TsparseMatrix", function(x, k = 0, ...) as(tril(.T.2.C(x), k = k, ...), "TsparseMatrix")) setMethod("triu", "TsparseMatrix", function(x, k = 0, ...) as(triu(.T.2.C(x), k = k, ...), "TsparseMatrix")) setMethod("band", "TsparseMatrix", function(x, k1, k2, ...) as(band(.T.2.C(x), k1 = k1, k2 = k2, ...), "TsparseMatrix")) ## For the "general" T ones (triangular & symmetric have special methods): setMethod("t", signature(x = "TsparseMatrix"), function(x) { r <- new(class(x)) r@i <- x@j r@j <- x@i if(any("x" == slotNames(x))) r@x <- x@x r@Dim <- x@Dim[2:1] r@Dimnames <- x@Dimnames[2:1] r })