
Parsing Rd files

Duncan Murdoch

December 9, 2021

Abstract

R 2.9.x introduced a parser for Rd format help files. When integrated into the build/install
process in R 2.10.x, it will allow easier processing, easier syntax checking, and eventually, easier
conversion to other formats.

To write this parser, it was necessary to make some small changes to the specification of the
format as described in Writing R Extensions, and to make some choices when that description
was ambiguous. Some existing Rd files do not meet the stricter format requirements (and some
were incorrectly formatted under the old requirements, but the errors were missed by the older
checks). The new stricter format is being informally called Rdoc version 2.

R 2.10.x will include some changes to the format, including some Sweave-like ways to
include executable code in R documentation files.

This document describes the new format, necessary changes to existing Rd files, and the
structure returned from the parse_Rd() function. It also includes some documentation of the
new \Sexpr markup macro.

1 Introduction

Prior to this document, the R documentation (Rd) file format did not have a formal descrip-
tion. It grew over time, with pieces added, and R and Perl code written to process it.

This document describes a formal parser (written in Bison) for the format, and the R
structure that it outputs. The intention is to make it easier for the format to evolve, or to be
replaced with a completely new one.

The next section describes the syntax; section 3 describes changes from what is described
in Writing R Extensions for R 2.11.0. The following section describes the parse_Rd() function
and its output. Some additions to the specification have been made in R-devel (to become R
2.12.x); these are noted earlier and discussed in more detail in the final section.

Except for the new \Sexpr macro, this document does not describe the interpretation of
the markup in Rd files; see Writing R Extensions for that.

2 Rd Syntax Specification

Rd files are text files with an associated encoding, readable as text connections in R. The
syntax only depends on a few ASCII characters, so at the level of this specification the encoding
is not important, however higher level interpretation will depend on the text connection having
read the proper encoding of the file.

There are three distinct types of text within an Rd file: LaTeX-like, R-like, and verbatim.
The first two contain markup, text and comments; verbatim text contains only text and
comments.

2.1 Encodings

The parser works on connections, which have an associated encoding. It is the caller’s respon-
sibility to declare the connection encoding properly when it is opened.

Not all encodings may be supported, because the libraries R uses cannot always perform
conversions. In particular, Asian double byte encodings are likely to cause trouble when that is

1

not the native encoding. Plain ASCII, UTF-8 and Latin1 should be supported on all systems
when the system is complete.

2.2 Lexical structure

The characters \, %, {, and } have special meaning in almost all parts of an Rd file; details
are given below. The exceptions are listed in section 2.7.

End of line (newline) characters mark the end of pieces of text. The end of a file does the
same. The newline markers are returned as part of the text.

The brackets [and] have special meaning in certain contexts; see section 2.3.
Whitespace (blanks, tabs, and formfeeds) is included in text.

2.2.1 The backslash

The backslash \ is used as an escape character: \\, \%, \{ and \} remove the special meaning
of the second character. The parser will drop the initial backslash, and return the other
character as part of the text.

The backslash is also used as an initial character for markup macros. In an R-like or
LaTeX-like context, a backslash followed by an alphabetic character starts a macro; the macro
name continues until the first non-alphanumeric character. If the name is not recognized the
parser drops all digits from the end, and tries again. If it is still not recognized it is returned
as an UNKNOWN token.

All other uses of backslashes are allowed, and are passed through by the parser as text.

2.2.2 The percent symbol

An unescaped percent symbol % marks the beginning of an Rd comment, which runs to the
end of the current line. The parser returns these marked as COMMENT tokens. The newline
or EOF at the end of the comment is not included as part of it.

2.2.3 Braces

The braces { and } are used to mark the arguments to markup macros, and may also appear
within text, provided they balance. In R-like and verbatim text, the parser keeps a count of
brace depth, and the return to zero depth signals the end of the token. In Latex-like mode,
braces group tokens; groups may be empty. Opening and closing braces on arguments and
when used for grouping in Latex-like text are not returned by the parser, but balanced braces
within R-like or verbatim text are.

2.3 Markup

Markup includes macros starting with a backslash \ with the second character alphabetic.
Some macros (e.g. \R) take no arguments, some take one or more arguments surrounded by
braces (e.g. \code{}, \section{}{}).

There are also three special classes of macros. The \link{} macro (and \Sexpr in R
2.10.x) may take one argument or two, with the first marked as an option in square brackets,
e.g. \link[option]{arg}. The \eqn{} and deqn{} macros may take one or two arguments
in braces, e.g. \eqn{} or \eqn{}{}.

The last special class of macros consists of #ifdef ... #endif and #ifndef ... #endif.
The # symbols must appear as the first character on a line starting with #ifdef, #ifndef, or
#endif, or it is not considered special.

These look like C preprocessor directives, but are processed by the parser as two argument
macros, with the first argument being the token on the line of the first directive, and the second
one being the text between the first directive and the #endif. Any text on the line following
the #endif will be discarded. For example,

#ifdef unix

Some text

#endif (text to be discarded)

2

Table 1: Table of sectioning macros.

Macro Arguments Section? List? Text type
\arguments 1 yes \item{}{} Latex-like
\author 1 yes no Latex-like
\concept 1 yes no Latex-like
\description 1 yes no Latex-like
\details 1 yes no Latex-like
\docType 1 yes no Latex-like
\encoding 1 yes no Latex-like
\format 1 yes no Latex-like
\keyword 1 yes no Latex-like
\name 1 yes no Latex-like
\note 1 yes no Latex-like
\references 1 yes no Latex-like
\section 2 yes no Latex-like
\seealso 1 yes no Latex-like
\source 1 yes no Latex-like
\title 1 yes no Latex-like
\value 1 yes \item{}{} Latex-like

\examples 1 yes no R-like
\usage 1 yes no R-like

\alias 1 yes no Verbatim
\Rdversion 1 yes no Verbatim
\synopsis 1 yes no Verbatim

\Sexpr option plus 1 sometimes no R-like
\RdOpts 1 yes no Verbatim

is processed with first argument unix (surrounded by whitespace) and second argument
Some text.

Markup macros are subdivided into those that start sections of the Rd file, and those that
may be used within a section. The sectioning macros may only be used at the top level, while
the others must be nested within the arguments of other macros. (The \Sexpr macro, to be
introduced in R 2.10.0, is normally used within a section, but can be used as a sectioning
macro. See section 5.)

Markup macros are also subdivided into those that contain list-like content, and those
that don’t. The \item macro may only be used within the argument of a list-like macro.
Within \enumerate{} or \itemize{} it takes no arguments, within \arguments{}, \value{}
and \describe{} it takes two arguments.

Finally, the text within the argument of each macro is classified into one of the three types
of text mentioned above. For example, the text within \code{} macros is R-like, and that
within \samp{} or \verb{} macros is verbatim.

The complete list of Rd file macros is shown in Tables 1 to 3.

2.4 LaTeX-like text

LaTeX-like text in an Rd file is a stream of markup, text, and comments.
Text in LaTeX-like mode consists of all characters other than markup and comments. The

white space within text is kept as part of it. This is subject to change.
Braces within LaTeX-like text must be escaped as \{ and \} to be considered as part of

the text. If not escaped, they group tokens in a LIST group.

3

Table 2: Table of markup macros within sections taking LaTeX-like text.

Macro Arguments Section? List? Text type
\acronym 1 no no Latex-like
\bold 1 no no Latex-like
\cite 1 no no Latex-like
\command 1 no no Latex-like
\dfn 1 no no Latex-like
\dQuote 1 no no Latex-like
\email 1 no no Latex-like
\emph 1 no no Latex-like
\file 1 no no Latex-like
\item special no no Latex-like
\linkS4class 1 no no Latex-like
\pkg 1 no no Latex-like
\sQuote 1 no no Latex-like
\strong 1 no no Latex-like
\var 1 no no Latex-like

\describe 1 no \item{}{} Latex-like
\enumerate 1 no \item Latex-like
\itemize 1 no \item Latex-like

\enc 2 no no Latex-like
\if 2 no no Latex-like
\ifelse 3 no no Latex-like
\method 2 no no Latex-like
\S3method 2 no no Latex-like
\S4method 2 no no Latex-like
\tabular 2 no no Latex-like
\subsection 2 no no Latex-like

\link option plus 1 no no Latex-like

\href 1+1 no no Verbatim then Latex-like

4

Table 3: Table of markup macros within sections taking no text, R-like text, or verbatim text.

Macro Arguments Section? List? Text type
\cr 0 no no
\dots 0 no no
\ldots 0 no no
\R 0 no no
\tab 0 no no

\code 1 no no R-like
\dontshow 1 no no R-like
\donttest 1 no no R-like
\testonly 1 no no R-like

\dontrun 1 no no Verbatim
\env 1 no no Verbatim
\kbd 1 no no Verbatim
\option 1 no no Verbatim
\out 1 no no Verbatim
\preformatted 1 no no Verbatim
\samp 1 no no Verbatim
\special 1 no no Verbatim
\url 1 no no Verbatim
\verb 1 no no Verbatim
\deqn 1 or 2 no no Verbatim
\eqn 1 or 2 no no Verbatim
\newcommand 2 both no Verbatim
\renewcommand 2 both no Verbatim

5

Brackets [and] within LaTeX-like text only have syntactic relevance after the \link or
\Sexpr macros, where they are used to delimit the optional argument.

Quotes ", ' and ` have no syntactic relevance within LaTeX-like text.

2.5 R-like text

R-like text in an Rd file is a stream of markup, R code, and comments. The underlying
mental model is that the markup could be replaced by suitable text and the R code would be
parseable by parse(), but parse_Rd() does not enforce this.

There are two types of comments in R-like mode. As elsewhere in Rd files, Rd comments
start with %, and run to the end of the line.

R-like comments start with # and run to either the end of the line, or a brace that closes the
block containing the R-like text. Unlike Rd comments, the Rd parser will return R comments
as part of the text of the code; the Rd comment will be returned marked as a COMMENT
token.

Quoted strings (using ", ' or `) within R-like text follow R rules: the string delimiters
must match and markup and comments within them are taken to be part of the strings and
are not interpreted by the Rd parser. This includes braces and R-like comments, but there
are two exceptions:

1. % characters must be escaped even within strings, or they will be taken as Rd comments.

2. The sequences \l or \v in a string will be taken to start a markup macro. This
is intended to allow \link or \var to be used in a string (e.g. the common idiom
\code{"\link{someclass}"}). While \l is not legal in an R string, \v is a way to en-
code the rarely used “vertical tab”. To insert a vertical tab into a string within an Rd
file it is necessary to use \\v.

Braces within R-like text outside of quoted strings must balance, or be escaped.
Outside of a quoted string, in R-like text the escape character \ indicates the start of a

markup macro. No markup macros are recognized within quoted strings except as noted in 2
above.

2.6 Verbatim text

Verbatim text within an Rd file is a pure stream of text, uninterpreted by the parser, with
the exceptions that braces must balance or be escaped, and % comments are recognized, and
backslashes that could be interpreted as escapes must themselves be escaped.

No markup macros are recognized within verbatim text.

2.7 Exceptions to special character handling

The escape handling for \, {, } and % described in the preceding sections has the following
exceptions:

1. In quoted strings in R-like code, braces are not counted and should not be escaped. For
example, \code{ "{" } is legal.

2. In the first argument to \eqn or \deqn (whether in one- or two-argument form), no
escapes or Rd comments are processed. Braces are counted unless escaped, so must be
paired or escaped. This argument is passed verbatim to LATEX for processing, including
all escapes. Thus

\deqn{ f(x) = \left\{

\begin{array}{ll}

0 & x < 0 \\

1 & x \ge 0

\end{array}

\right. }{ (non-Latex version) }

can be used to display the equation

f(x) =

{
0 x < 0
1 x ≥ 0

6

when rendered in LATEX, and a non-LATEX version in other formats.

3 Changes from R 2.8.x Rd format

The following list describes syntax that was accepted in R 2.8.x but which is not accepted by
the parse_Rd() parser.

1. The \code{} macro was used for general verbatim text, similar to \samp{}; now \verb{}

(or \kbd, or \preformatted) must be used when the text is not R-like. This mainly
affects text containing the quote characters ", ' or `, as these will be taken to start
quoted strings in R code. Escape sequences (e.g. \code{\a}) should now be written
as \verb{\a}, as otherwise \a would be taken to be a markup macro. Descriptions of
languages other than R (e.g. examples of regular expressions) are often not syntactically
valid R and may not be parsed properly in \code{}. Note that currently \verb{} is only
supported in Rdoc version 2.

2. Treating #ifdef ... #endif and #ifndef ... #endif as markup macros means that
they must be wholly nested within other macros. For example, the construction

\title{

#ifdef unix

Unix title}

#endif

#ifdef windows

Windows title}

#endif

needs to be rewritten as

\title{

#ifdef unix

Unix title

#endif

#ifdef windows

Windows title

#endif

}

3. R strings must be completely nested within markup macros. For example,
\code{"my string}" will now be taken to be an unterminated \code macro, since the
closing brace is within the string.

4. Macros should be followed by a non-alphanumeric character, not just a numeric one.
For example, 1\dots10 now should be coded as 1\dots{}10. (In this case, it will be
parsed properly even though \dots10 is not a legal macro, because the parser will
attempt to drop the digits and reinterpret it as \dots followed by the text 10. However,
1a\dots10b will be parsed as text 1a followed by the unknown macro \dots10b.) There
is an internal limit (currently about 25) on the number of digits that can be removed
before the pushback buffer in the parser overflows.

5. In processing in earlier versions, braces in R strings could be escaped, or left unescaped
if they balanced within the section. Now if they are escaped within a string the escape
character will be treated as part of the string, and since "\{" is not legal R code, this can
lead to problems. In order to create files compatible with both the new parser and the
older system, braces should not be quoted within strings, and they should be balanced,
perhaps by adding a matching brace in a comment. For example,

\code{"\{"}

could now be entered as

\code{"{" # not "}"}

The matching brace is not needed if the new parser is the only target.

7

4 The parsing function

The parse_Rd() function takes a text connection and produces a parsed version of it. The
arguments to the parse_Rd() function are described in its man page. The general structure
of the result is a list of section markup, with one entry per Rd section. Each section consists
of a list of text and markup macros, with the text stored as one-element character vectors
and the markup macros as lists.

Single argument macros store the elements of the argument directly, with each element
tagged as described below. Double argument macros are stored as two element lists; the first
element is the first argument, the second element is the second argument. Neither one is
tagged. The macros with either one or two arguments (currently \eqn and \deqn) store the
two element form like other double argument macros, and store the one element form in an
analogous one element list.

The attributes of each element give information about the type of element. The following
attributes are used:

class The object returned by parse_Rd() is of class “Rd”.

Rd_tag Each object in the list generated from markup macros has a tag corresponding to its
type. If the item is a markup macro, the tag is the macro (e.g. \code or #ifdef).

Non-macro tags include TEXT, RCODE, VERB, COMMENT, UNKNOWN (an unrecognized macro),
and LIST (in Latex-like mode, a group of tokens in braces).

Rd_option Markup lists which had an optional parameter will have it stored in the Rd_option
attribute.

srcref and srcfile Objects include source references.

4.1 Example

The following example looks at the parse_Rd() man page. The tools:::RdTags function
extracts the tags from an “Rd” object. See the Rd2HTML function in the tools package for an
extended example of working with the object.

> library(tools)

> infile <- file.path(tools:::.R_top_srcdir_from_Rd(),

+ "src/library/tools/man/parse_Rd.Rd")

> Rd <- parse_Rd(infile)

> print(tags <- tools:::RdTags(Rd))

[1] "COMMENT" "TEXT" "COMMENT"

[4] "TEXT" "COMMENT" "TEXT"

[7] "COMMENT" "TEXT" "TEXT"

[10] "\\name" "TEXT" "\\alias"

[13] "TEXT" "\\alias" "TEXT"

[16] "\\alias" "TEXT" "\\title"

[19] "TEXT" "\\description" "TEXT"

[22] "\\usage" "TEXT" "\\arguments"

[25] "TEXT" "\\details" "TEXT"

[28] "\\value" "TEXT" "\\references"

[31] "TEXT" "\\author" "TEXT"

[34] "\\seealso" "TEXT" "\\keyword"

[37] "TEXT" "\\keyword" "TEXT"

> Rd[[1]]

[1] "% File src/library/tools/man/parse_Rd.Rd"

attr(,"Rd_tag")

[1] "COMMENT"

> Rd[[which(tags == "\\title")]]

[[1]]

[1] "Parse an Rd File"

8

attr(,"Rd_tag")

[1] "TEXT"

attr(,"Rd_tag")

[1] "\\title"

> tools:::RdTags(Rd[[which(tags == "\\value")]])

[1] "TEXT" "TEXT" "\\code" "TEXT" "\\code" "TEXT"

[7] "TEXT" "TEXT" "\\code" "TEXT" "\\code" "TEXT"

[13] "TEXT" "TEXT" "TEXT" "\\code" "TEXT" "TEXT"

[19] "\\code" "TEXT" "TEXT" "\\code" "TEXT" "TEXT"

[25] "\\code" "TEXT" "TEXT" "TEXT"

> # Do a verbose parse

> Rd <- parse_Rd(infile, verbose=TRUE)

0:0: STARTFILE:

1:1: COMMENT: % File src/library/tools/man/parse_Rd.Rd

1:41: TEXT:

2:1: COMMENT: % Part of the R package, https://www.R-project.org

2:51: TEXT:

3:1: COMMENT: % Copyright 2008-2016 R Core Team

3:34: TEXT:

4:1: COMMENT: % Distributed under GPL 2 or later

4:35: TEXT:

5:1: TEXT:

6:1: VSECTIONHEADER: \name

6:6: '{'
6:7: VERB: parse_Rd

6:15: '}'
6:16: TEXT:

7:1: VSECTIONHEADER: \alias

7:7: '{'
7:8: VERB: parse_Rd

7:16: '}'
7:17: TEXT:

8:1: VSECTIONHEADER: \alias

8:7: '{'
8:8: VERB: print.Rd

8:16: '}'
8:17: TEXT:

9:1: VSECTIONHEADER: \alias

9:7: '{'
9:8: VERB: as.character.Rd

9:23: '}'
9:24: TEXT:

10:1: SECTIONHEADER: \title

10:7: '{'
10:8: TEXT: Parse an Rd File

10:24: '}'
10:25: TEXT:

9

11:1: SECTIONHEADER: \description

11:13: '{'
11:14: TEXT:

12:1: TEXT: This function reads an R documentation (Rd) file and parses it, for

13:1: TEXT: processing by other functions.

14:1: '}'
14:2: TEXT:

15:1: RSECTIONHEADER: \usage

15:7: '{'
15:8: RCODE:

16:1: RCODE: parse_Rd(file, srcfile = NULL, encoding = "unknown",

17:1: RCODE: verbose = FALSE, fragment = FALSE, warningCalls = TRUE,

18:1: RCODE: macros = file.path(R.home("share"), "Rd", "macros", "system.Rd"),

19:1: RCODE: permissive = FALSE)

20:1: LATEXMACRO2: \method

20:8: '{'
20:9: TEXT: print

20:14: '}'
20:15: '{'
20:16: TEXT: Rd

20:18: '}'
20:19: RCODE: (x, deparse = FALSE,

20:40: ESCAPE: \dots

20:45: RCODE:)

21:1: LATEXMACRO2: \method

21:8: '{'
21:9: TEXT: as.character

21:21: '}'
21:22: '{'
21:23: TEXT: Rd

21:25: '}'
21:26: RCODE: (x, deparse = FALSE,

21:47: ESCAPE: \dots

21:52: RCODE:)

22:1: '}'
22:2: TEXT:

23:1: LISTSECTION: \arguments

23:11: '{'
23:12: TEXT:

24:1: TEXT:

24:3: LATEXMACRO2: \item

24:8: '{'
24:9: TEXT: file

24:13: '}'

10

24:14: '{'
24:15: TEXT: A filename or text-mode connection. At present filenames

25:1: TEXT: work best.

25:15: '}'
25:16: TEXT:

26:1: TEXT:

26:3: LATEXMACRO2: \item

26:8: '{'
26:9: TEXT: srcfile

26:16: '}'
26:17: '{'
26:18: RCODEMACRO: \code

26:23: '{'
26:24: RCODE: NULL

26:28: '}'
26:29: TEXT: , or a

26:36: RCODEMACRO: \code

26:41: '{'
26:42: RCODE: "srcfile"

26:51: '}'
26:52: TEXT: object. See the

27:1: TEXT:

27:5: LATEXMACRO: \sQuote

27:12: '{'
27:13: TEXT: Details

27:20: '}'
27:21: TEXT: section.

27:30: '}'
27:31: TEXT:

28:1: TEXT:

28:3: LATEXMACRO2: \item

28:8: '{'
28:9: TEXT: encoding

28:17: '}'
28:18: '{'
28:19: TEXT: Encoding to be assumed for input strings.

28:60: '}'
28:61: TEXT:

29:1: TEXT:

29:3: LATEXMACRO2: \item

29:8: '{'
29:9: TEXT: verbose

29:16: '}'
29:17: '{'
29:18: TEXT: Logical indicating whether detailed parsing

30:1: TEXT: information should be printed.

30:35: '}'
30:36: TEXT:

31:1: TEXT:

31:3: LATEXMACRO2: \item

31:8: '{'

11

31:9: TEXT: fragment

31:17: '}'
31:18: '{'
31:19: TEXT: Logical indicating whether file represents a complete

32:1: TEXT: Rd file, or a fragment.

32:28: '}'
32:29: TEXT:

33:1: TEXT:

33:3: LATEXMACRO2: \item

33:8: '{'
33:9: TEXT: warningCalls

33:21: '}'
33:22: '{'
33:23: TEXT: Logical: should parser warnings include the call?

33:72: '}'
33:73: TEXT:

34:1: TEXT:

34:3: LATEXMACRO2: \item

34:8: '{'
34:9: TEXT: macros

34:15: '}'
34:16: '{'
34:17: TEXT: Filename or environment from which to load additional

35:1: TEXT: macros, or a logical value. See the Details below.

35:56: '}'
35:57: TEXT:

36:1: TEXT:

36:3: LATEXMACRO2: \item

36:8: '{'
36:9: TEXT: permissive

36:19: '}'
36:20: '{'
36:21: TEXT: Logical indicating that unrecognized macros

37:1: TEXT: should be treated as text with no warning.

37:47: '}'
37:48: TEXT:

38:1: TEXT:

38:3: LATEXMACRO2: \item

38:8: '{'
38:9: TEXT: x

38:10: '}'
38:11: '{'
38:12: TEXT: An object of class Rd.

38:34: '}'
38:35: TEXT:

39:1: TEXT:

39:3: LATEXMACRO2: \item

39:8: '{'
39:9: TEXT: deparse

39:16: '}'

12

39:17: '{'
39:18: TEXT: If

39:21: RCODEMACRO: \code

39:26: '{'
39:27: RCODE: TRUE

39:31: '}'
39:32: TEXT: , attempt to reinstate the escape characters

40:1: TEXT: so that the resulting characters will parse to the same object.

40:68: '}'
40:69: TEXT:

41:1: TEXT:

41:3: LATEXMACRO2: \item

41:8: '{'
41:9: ESCAPE: \dots

41:14: '}'
41:15: '{'
41:16: TEXT: Further arguments to be passed to or from other methods.

41:72: '}'
41:73: TEXT:

42:1: '}'
42:2: TEXT:

43:1: SECTIONHEADER: \details

43:9: '{'
43:10: TEXT:

44:1: TEXT: This function parses

44:24: LATEXMACRO: \file

44:29: '{'
44:30: TEXT: Rd

44:32: '}'
44:33: TEXT: files according to the specification given

45:1: TEXT: in

45:6: VERBMACRO: \url

45:10: '{'
45:11: VERB: https://developer.r-project.org/parseRd.pdf

45:54: '}'
45:55: TEXT: .

46:1: TEXT:

47:1: TEXT: It generates a warning for each parse error and attempts to continue

48:1: TEXT: parsing. In order to continue, it is generally necessary to drop some

49:1: TEXT: parts of the file, so such warnings should not be ignored.

50:1: TEXT:

51:1: TEXT: Files without a marked encoding are by default assumed to be in the

52:1: TEXT: native encoding. An alternate default can be set using the

53:1: TEXT:

13

53:3: RCODEMACRO: \code

53:8: '{'
53:9: RCODE: encoding

53:17: '}'
53:18: TEXT: argument. All text in files is translated to the

54:1: TEXT: UTF-8 encoding in the parsed object.

55:1: TEXT:

56:1: TEXT: As from

56:11: ESCAPE: \R

56:13: TEXT: version 3.2.0, User-defined macros may be given in a

57:1: TEXT: separate file using

57:23: VERBMACRO: \samp

57:28: '{'
57:29: VERB: \newcommand

57:40: '}'
57:41: TEXT: or

57:45: VERBMACRO: \samp

57:50: '{'
57:51: VERB: \renewcommand

57:64: '}'
57:65: TEXT: .

58:1: TEXT: An environment may also be given: it would be produced by

59:1: TEXT:

59:3: RCODEMACRO: \code

59:8: '{'
59:9: OPTMACRO: \link

59:14: '{'
59:15: TEXT: loadRdMacros

59:27: '}'
59:28: '}'
59:29: TEXT: ,

59:31: RCODEMACRO: \code

59:36: '{'
59:37: OPTMACRO: \link

59:42: '{'
59:43: TEXT: loadPkgRdMacros

59:58: '}'
59:59: '}'
59:60: TEXT: , or

60:1: TEXT: by a previous call to

60:25: RCODEMACRO: \code

60:30: '{'
60:31: RCODE: parse_Rd

60:39: '}'
60:40: TEXT: . If a logical value

61:1: TEXT: is given, only the default built-in macros will be used;

62:1: TEXT:

62:3: RCODEMACRO: \code

62:8: '{'

14

62:9: RCODE: FALSE

62:14: '}'
62:15: TEXT: indicates that no

62:34: RCODEMACRO: \code

62:39: '{'
62:40: RCODE: "macros"

62:48: '}'
62:49: TEXT: attribute

63:1: TEXT: will be returned with the result.

64:1: TEXT:

65:1: TEXT: The

65:7: RCODEMACRO: \code

65:12: '{'
65:13: RCODE: permissive

65:23: '}'
65:24: TEXT: argument allows text to be parsed that is

66:1: TEXT: not completely in Rd format. Typically it would be LaTeX code,

67:1: TEXT: used in an Rd fragment, e.g.

67:31: USERMACRO: \sspace

67:38: LATEXMACRO3: \ifelse

67:38: '{'
67:38: TEXT: latex

67:38: '}'
67:38: '{'
67:38: VERBMACRO: \out

67:38: '{'
67:38: VERB: ~

67:38: '}'
67:38: '}'
67:38: '{'
67:38: TEXT:

67:38: '}'
67:38: '{'
67:39: '}'
67:40: TEXT: in a

67:45: RCODEMACRO: \code

67:50: '{'
67:51: OPTMACRO: \link

67:56: '{'
67:57: TEXT: bibentry

67:65: '}'
67:66: '}'
67:67: TEXT: .

68:1: TEXT: With

68:8: RCODEMACRO: \code

68:13: '{'
68:14: RCODE: permissive = TRUE

68:31: '}'
68:32: TEXT: , this will be passed through as plain

69:1: TEXT: text. Since

69:16: RCODEMACRO: \code

15

69:21: '{'
69:22: RCODE: parse_Rd

69:30: '}'
69:31: TEXT: doesn't know how many arguments

70:1: TEXT: belong in LaTeX macros, it will guess based on the presence

71:1: TEXT: of braces after the macro; this is not infallible.

72:1: '}'
72:2: TEXT:

73:1: LISTSECTION: \value

73:7: '{'
73:8: TEXT:

74:1: TEXT:

74:3: RCODEMACRO: \code

74:8: '{'
74:9: RCODE: parse_Rd

74:17: '}'
74:18: TEXT: returns an object of class

74:46: RCODEMACRO: \code

74:51: '{'
74:52: RCODE: "Rd"

74:56: '}'
74:57: TEXT: . The

75:1: TEXT: internal format of this object is subject to change. The

76:1: TEXT:

76:3: RCODEMACRO: \code

76:8: '{'
76:9: RCODE: as.character()

76:23: '}'
76:24: TEXT: and

76:29: RCODEMACRO: \code

76:34: '{'
76:35: RCODE: print()

76:42: '}'
76:43: TEXT: methods defined for the

77:1: TEXT: class return character vectors and print them, respectively.

78:1: TEXT:

79:1: TEXT: Unless

79:10: RCODEMACRO: \code

79:15: '{'
79:16: RCODE: macros = FALSE

79:30: '}'
79:31: TEXT: , the object will have an attribute

80:1: TEXT: named

80:9: RCODEMACRO: \code

80:14: '{'
80:15: RCODE: "macros"

80:23: '}'

16

80:24: TEXT: , which is an environment containing the

81:1: TEXT: macros defined in

81:21: RCODEMACRO: \code

81:26: '{'
81:27: RCODE: file

81:31: '}'
81:32: TEXT: , in a format that can be used for

82:1: TEXT: further

82:11: RCODEMACRO: \code

82:16: '{'
82:17: RCODE: parse_Rd

82:25: '}'
82:26: TEXT: calls in the same session. It is not

83:1: TEXT: guaranteed to work if saved to a file and reloaded in a different

84:1: TEXT: session.

85:1: '}'
85:2: TEXT:

86:1: SECTIONHEADER: \references

86:12: '{'
86:13: TEXT:

86:14: VERBMACRO: \url

86:18: '{'
86:19: VERB: https://developer.r-project.org/parseRd.pdf

86:62: '}'
86:63: TEXT:

86:64: '}'
86:65: TEXT:

87:1: SECTIONHEADER: \author

87:8: '{'
87:9: TEXT: Duncan Murdoch

87:25: '}'
87:26: TEXT:

88:1: SECTIONHEADER: \seealso

88:9: '{'
88:10: TEXT:

89:1: TEXT:

89:3: RCODEMACRO: \code

89:8: '{'
89:9: OPTMACRO: \link

89:14: '{'
89:15: TEXT: Rd2HTML

89:22: '}'
89:23: '}'
89:24: TEXT: for the converters that use the output of

90:1: TEXT:

90:3: RCODEMACRO: \code

90:8: '{'
90:9: RCODE: parse_Rd()

17

90:19: '}'
90:20: TEXT: .

91:1: '}'
91:2: TEXT:

92:1: SECTIONHEADER: \keyword

92:9: '{'
92:10: TEXT: utilities

92:19: '}'
92:20: TEXT:

93:1: SECTIONHEADER: \keyword

93:9: '{'
93:10: TEXT: documentation

93:23: '}'
93:24: TEXT:

94:1: END_OF_INPUT

5 The Sexpr macro in R 2.10.0

R 2.10.0 will contain the new macros \Sexpr and \RdOpts. These are modelled after
Sweave, and are intended to control R expressions in the Rd file. To the parser, the
\Sexpr macro is simply a macro taking an optional verbatim argument in square brack-
ets, and a required R-like argument in the braces. For example, \Sexpr{ x <- 1 } or
\Sexpr[stage=build]{ loadDatabase() }. The \RdOpts macro takes a single verbatim ar-
gument, intended to set defaults for the options in \Sexpr.

These two macros are modelled after Sweave, but the syntax and options are not identical.
(We will expand on the differences below.)

The R-like argument to \Sexpr must be valid R code that can be executed; it cannot con-
tain any expandable macros other than #ifdef/#ifndef/#endif. Depending on the options,
the code may be executed at package build time, package install time, or man page rendering
time. Since package tarballs are built with the conditionals included, #ifdef/#ifndef/#endif
blocks cannot be included in code designed to be executed at build time. Rd comments using
% are ignored during execution.

The options follow the same format as in Sweave, but different options are supported.
Currently the allowed options and their defauls are:

eval=TRUE Whether the R code should be evaluated.

echo=FALSE Whether the R code should be echoed. If TRUE, a display will be given in a
preformatted block. For example, \Sexpr[echo=TRUE]{ x <- 1 } will be displayed as

> x <- 1

keep.source=TRUE Whether to keep the author’s formatting when displaying the code, or
throw it away and use a deparsed version.

results=text How should the results be displayed? The possibilities are

text Apply as.character() to the result of the code, and insert it as a text element.

verbatim Print the results of the code just as if it was executed at the console, and
include the printed results verbatim. (Invisible results will not print.)

rd The result is assumed to be a character vector containing markup to be passed to
parse_Rd(fragment=TRUE), with the result inserted in place. This could be used to
insert computed aliases, for instance.

hide Insert no output.

strip.white=TRUE Remove leading and trailing white space from each line of output if
strip.white=TRUE. With strip.white=all, also remove blank lines.

18

stage=install Control when this macro is run. Possible values are

build The macro is run when building a source tarball.

install The macro is run when installing from source.

render The macro is run when displaying the help page.

The #ifdef conditionals are applied after the build macros but before the install

macros. In some situations (e.g. installing directly from a source directory without a
tarball, or building a binary package) the above descriptions may not be accurate, but
authors should be able to rely on the sequence being build, #ifdef, install, render,
with all stages executed.

Code is only run once in each stage, so a \Sexpr[results=rd] macro can output an
\Sexpr macro designed for a later stage, but not for the current one or any earlier stage.

width, height, fig These options are currently allowed but ignored. Eventually the intention
is that they will allow insertion of graphics into the man page.

5.1 Differences from Sweave

As of the current writing, these are the important differences from Sweave:

1. Our \Sexpr macro takes options, and can give full displayed output. In Sweave the
Noweb syntax or other macros are needed to process options.

2. The Sweave \Sexpr macro is roughly equivalent to our default
\Sexpr[eval=TRUE,echo=FALSE,results=text] but we will insert whatever
as.character() gives for the whole result, while Sweave only inserts the first
element of a vector result.

3. We use \RdOpts rather than \SweaveOpts here, to emphasize that we are not running
Sweave, just something modelled on it.

4. We run \Sexpr macros in the three stage system, whereas Sweave does calculations in
one pass.

6 New macros in R 2.12.0

The \href macro takes one verbatim argument (the URL) and one LaTeX-like argument (the
text to display to the user).

The \newcommand and \renewcommand macros each take two verbatim arguments, allowing
users to define their own macros. User defined macros all take verbatim arguments. See
Writing R Extensions for a discussion of their use.

19

