% File src/library/stats/man/symnum.Rd % Part of the R package, https://www.R-project.org % Copyright 1995-2009 R Core Team % Distributed under GPL 2 or later \name{symnum} \alias{symnum} \title{Symbolic Number Coding} \concept{matrix visualization} \description{ Symbolically encode a given numeric or logical vector or array. Particularly useful for visualization of structured matrices, e.g., correlation, sparse, or logical ones. } \usage{ symnum(x, cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95), symbols = if(numeric.x) c(" ", ".", ",", "+", "*", "B") else c(".", "|"), legend = length(symbols) >= 3, na = "?", eps = 1e-5, numeric.x = is.numeric(x), corr = missing(cutpoints) && numeric.x, show.max = if(corr) "1", show.min = NULL, abbr.colnames = has.colnames, lower.triangular = corr && is.numeric(x) && is.matrix(x), diag.lower.tri = corr && !is.null(show.max)) } \arguments{ \item{x}{numeric or logical vector or array.} \item{cutpoints}{numeric vector whose values \code{cutpoints[j]}% \eqn{= c_j}{ == c[j]} (\emph{after} augmentation, see \code{corr} below) are used for intervals.} \item{symbols}{character vector, one shorter than (the \emph{augmented}, see \code{corr} below) \code{cutpoints}. \code{symbols[j]}\eqn{= s_j}{ == s[j]} are used as \sQuote{code} for the (half open) interval \eqn{(c_j,c_{j+1}]}{(c[j], c[j+1]]}. When \code{numeric.x} is \code{FALSE}, i.e., by default when argument \code{x} is \code{logical}, the default is \code{c(".","|")} (graphical 0 / 1 s).} \item{legend}{logical indicating if a \code{"legend"} attribute is desired.} \item{na}{character or logical. How \code{\link{NA}s} are coded. If \code{na == FALSE}, \code{NA}s are coded invisibly, \emph{including} the \code{"legend"} attribute below, which otherwise mentions NA coding.} \item{eps}{absolute precision to be used at left and right boundary.} \item{numeric.x}{logical indicating if \code{x} should be treated as numbers, otherwise as logical.} \item{corr}{logical. If \code{TRUE}, \code{x} contains correlations. The cutpoints are augmented by \code{0} and \code{1} and \code{abs(x)} is coded.} \item{show.max}{if \code{TRUE}, or of mode \code{character}, the maximal cutpoint is coded especially.} \item{show.min}{if \code{TRUE}, or of mode \code{character}, the minimal cutpoint is coded especially.} \item{abbr.colnames}{logical, integer or \code{NULL} indicating how column names should be abbreviated (if they are); if \code{NULL} (or \code{FALSE} and \code{x} has no column names), the column names will all be empty, i.e., \code{""}; otherwise if \code{abbr.colnames} is false, they are left unchanged. If \code{TRUE} or integer, existing column names will be abbreviated to \code{\link{abbreviate}(*, minlength = abbr.colnames)}.} \item{lower.triangular}{logical. If \code{TRUE} and \code{x} is a matrix, only the \emph{lower triangular} part of the matrix is coded as non-blank.} \item{diag.lower.tri}{logical. If \code{lower.triangular} \emph{and} this are \code{TRUE}, the \emph{diagonal} part of the matrix is shown.} } \note{ The optional (mostly logical) arguments all try to use smart defaults. Specifying them explicitly may lead to considerably improved output in many cases. } \value{ An atomic character object of class \code{\link{noquote}} and the same dimensions as \code{x}. If \code{legend} is \code{TRUE} (as by default when there are more than two classes), the result has an attribute \code{"legend"} containing a legend of the returned character codes, in the form \deqn{c_1 s_1 c_2 s_2 \dots s_n c_{n+1}}{c[1] \sQuote{s[1]} c[2] \sQuote{s[2]} \dots \sQuote{s[n]} c_[n+1]} where \eqn{c_j}{c[j]}\code{ = cutpoints[j]} and \eqn{s_j}{s[j]}\code{ = symbols[j]}. } \author{Martin Maechler \email{maechler@stat.math.ethz.ch}} \seealso{ \code{\link{as.character}}; \code{\link{image}} } \examples{ ii <- setNames(0:8, 0:8) symnum(ii, cutpoints = 2*(0:4), symbols = c(".", "-", "+", "$")) symnum(ii, cutpoints = 2*(0:4), symbols = c(".", "-", "+", "$"), show.max = TRUE) symnum(1:12 \%\% 3 == 0) # --> "|" = TRUE, "." = FALSE for logical ## Pascal's Triangle modulo 2 -- odd and even numbers: N <- 38 pascal <- t(sapply(0:N, function(n) round(choose(n, 0:N - (N-n)\%/\%2)))) rownames(pascal) <- rep("", 1+N) # <-- to improve "graphic" symnum(pascal \%\% 2, symbols = c(" ", "A"), numeric.x = FALSE) ##-- Symbolic correlation matrices: symnum(cor(attitude), diag.lower.tri = FALSE) symnum(cor(attitude), abbr.colnames = NULL) symnum(cor(attitude), abbr.colnames = FALSE) symnum(cor(attitude), abbr.colnames = 2) symnum(cor(rbind(1, rnorm(25), rnorm(25)^2))) symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! -- symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n symnum(cm1, diag.lower.tri = FALSE) symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n symnum(cm2, lower.triangular = FALSE) ## NA's: Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA symnum(Cm, show.max = NULL) ## Graphical P-values (aka "significance stars"): pval <- rev(sort(c(outer(1:6, 10^-(1:3))))) symp <- symnum(pval, corr = FALSE, cutpoints = c(0, .001,.01,.05, .1, 1), symbols = c("***","**","*","."," ")) noquote(cbind(P.val = format(pval), Signif = symp)) } \keyword{utilities} \keyword{character}