% File src/library/stats/man/summary.nls.Rd % Part of the R package, https://www.R-project.org % Copyright 1995-2009 R Core Team % Distributed under GPL 2 or later \name{summary.nls} \alias{summary.nls} \alias{print.summary.nls} \title{Summarizing Non-Linear Least-Squares Model Fits} \description{ \code{summary} method for class \code{"nls"}. } \usage{ \method{summary}{nls}(object, correlation = FALSE, symbolic.cor = FALSE, \dots) \method{print}{summary.nls}(x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), \dots) } \arguments{ \item{object}{an object of class \code{"nls"}.} \item{x}{an object of class \code{"summary.nls"}, usually the result of a call to \code{summary.nls}.} \item{correlation}{logical; if \code{TRUE}, the correlation matrix of the estimated parameters is returned and printed.} \item{digits}{the number of significant digits to use when printing.} \item{symbolic.cor}{logical. If \code{TRUE}, print the correlations in a symbolic form (see \code{\link{symnum}}) rather than as numbers.} \item{signif.stars}{logical. If \code{TRUE}, \sQuote{significance stars} are printed for each coefficient.} \item{\dots}{further arguments passed to or from other methods.} } \details{ The distribution theory used to find the distribution of the standard errors and of the residual standard error (for t ratios) is based on linearization and is approximate, maybe very approximate. \code{print.summary.nls} tries to be smart about formatting the coefficients, standard errors, etc. and additionally gives \sQuote{significance stars} if \code{signif.stars} is \code{TRUE}. Correlations are printed to two decimal places (or symbolically): to see the actual correlations print \code{summary(object)$correlation} directly. } \value{ The function \code{summary.nls} computes and returns a list of summary statistics of the fitted model given in \code{object}, using the component \code{"formula"} from its argument, plus \item{residuals}{the \emph{weighted} residuals, the usual residuals rescaled by the square root of the weights specified in the call to \code{nls}.} \item{coefficients}{a \eqn{p \times 4}{p x 4} matrix with columns for the estimated coefficient, its standard error, t-statistic and corresponding (two-sided) p-value.} \item{sigma}{the square root of the estimated variance of the random error \deqn{\hat\sigma^2 = \frac{1}{n-p}\sum_i{R_i^2},}{\sigma^2 = 1/(n-p) Sum(R[i]^2),} where \eqn{R_i}{R[i]} is the \eqn{i}-th weighted residual.} \item{df}{degrees of freedom, a 2-vector \eqn{(p, n-p)}. (Here and elsewhere \eqn{n} omits observations with zero weights.)} \item{cov.unscaled}{a \eqn{p \times p}{p x p} matrix of (unscaled) covariances of the parameter estimates.} \item{correlation}{the correlation matrix corresponding to the above \code{cov.unscaled}, if \code{correlation = TRUE} is specified and there are a non-zero number of residual degrees of freedom.} \item{symbolic.cor}{(only if \code{correlation} is true.) The value of the argument \code{symbolic.cor}.} } \seealso{ The model fitting function \code{\link{nls}}, \code{\link{summary}}. Function \code{\link{coef}} will extract the matrix of coefficients with standard errors, t-statistics and p-values. } \keyword{regression} \keyword{models}