% File src/library/stats/man/rWishart.Rd % Part of the R package, https://www.R-project.org % Copyright 2012-2014 R Core Team % Distributed under GPL 2 or later \name{rWishart} \alias{rWishart} \title{Random Wishart Distributed Matrices} \description{ Generate \code{n} random matrices, distributed according to the Wishart distribution with parameters \code{Sigma} and \code{df}, \eqn{W_p(\Sigma, m),\ m=\code{df},\ \Sigma=\code{Sigma}}{W_p(Sigma, df)}. } \usage{ rWishart(n, df, Sigma) } \arguments{ \item{n}{integer sample size.} \item{df}{numeric parameter, \dQuote{degrees of freedom}.} \item{Sigma}{positive definite (\eqn{p\times p}{p * p}) \dQuote{scale} matrix, the matrix parameter of the distribution.} } \details{ If \eqn{X_1,\dots, X_m, \ X_i\in\mathbf{R}^p}{X1,...,Xm, Xi in R^p} is a sample of \eqn{m} independent multivariate Gaussians with mean (vector) 0, and covariance matrix \eqn{\Sigma}, the distribution of \eqn{M = X'X} is \eqn{W_p(\Sigma, m)}. Consequently, the expectation of \eqn{M} is \deqn{E[M] = m\times\Sigma.}{E[M] = m * Sigma.} Further, if \code{Sigma} is scalar (\eqn{p = 1}), the Wishart distribution is a scaled chi-squared (\eqn{\chi^2}{chi^2}) distribution with \code{df} degrees of freedom, \eqn{W_1(\sigma^2, m) = \sigma^2 \chi^2_m}{W_1(sigma^2, m) = sigma^2 chi[m]^2}. The component wise variance is \deqn{\mathrm{Var}(M_{ij}) = m(\Sigma_{ij}^2 + \Sigma_{ii} \Sigma_{jj}).}{% Var(M[i,j]) = m*(S[i,j]^2 + S[i,i] * S[j,j]), where S=Sigma.} } \value{ a numeric \code{\link{array}}, say \code{R}, of dimension \eqn{p \times p \times n}{p * p * n}, where each \code{R[,,i]} is a positive definite matrix, a realization of the Wishart distribution \eqn{W_p(\Sigma, m),\ \ m=\code{df},\ \Sigma=\code{Sigma}}{W_p(Sigma, df)}. } \references{ Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) \emph{Multivariate Analysis}, London: Academic Press. } \author{Douglas Bates} \seealso{ \code{\link{cov}}, \code{\link{rnorm}}, \code{\link{rchisq}}. } \examples{ ## Artificial S <- toeplitz((10:1)/10) set.seed(11) R <- rWishart(1000, 20, S) dim(R) # 10 10 1000 mR <- apply(R, 1:2, mean) # ~= E[ Wish(S, 20) ] = 20 * S stopifnot(all.equal(mR, 20*S, tolerance = .009)) ## See Details, the variance is Va <- 20*(S^2 + tcrossprod(diag(S))) vR <- apply(R, 1:2, var) stopifnot(all.equal(vR, Va, tolerance = 1/16)) } \keyword{multivariate}