% File src/library/stats/man/Lognormal.Rd % Part of the R package, https://www.R-project.org % Copyright 1995-2014 R Core Team % Distributed under GPL 2 or later \name{Lognormal} \alias{Lognormal} \alias{dlnorm} \alias{plnorm} \alias{qlnorm} \alias{rlnorm} \title{The Log Normal Distribution} \description{ Density, distribution function, quantile function and random generation for the log normal distribution whose logarithm has mean equal to \code{meanlog} and standard deviation equal to \code{sdlog}. } \usage{ dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE) qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE) rlnorm(n, meanlog = 0, sdlog = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{meanlog, sdlog}{mean and standard deviation of the distribution on the log scale with default values of \code{0} and \code{1} respectively.} \item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).} \item{lower.tail}{logical; if TRUE (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \value{ \code{dlnorm} gives the density, \code{plnorm} gives the distribution function, \code{qlnorm} gives the quantile function, and \code{rlnorm} generates random deviates. The length of the result is determined by \code{n} for \code{rlnorm}, and is the maximum of the lengths of the numerical arguments for the other functions. The numerical arguments other than \code{n} are recycled to the length of the result. Only the first elements of the logical arguments are used. } \source{ \code{dlnorm} is calculated from the definition (in \sQuote{Details}). \code{[pqr]lnorm} are based on the relationship to the normal. Consequently, they model a single point mass at \code{exp(meanlog)} for the boundary case \code{sdlog = 0}. } \details{ The log normal distribution has density \deqn{ f(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-(\log(x) - \mu)^2/2 \sigma^2}% }{f(x) = 1/(\sqrt(2 \pi) \sigma x) e^-((log x - \mu)^2 / (2 \sigma^2))} where \eqn{\mu} and \eqn{\sigma} are the mean and standard deviation of the logarithm. The mean is \eqn{E(X) = exp(\mu + 1/2 \sigma^2)}, the median is \eqn{med(X) = exp(\mu)}, and the variance \eqn{Var(X) = exp(2\mu + \sigma^2)(exp(\sigma^2) - 1)}{Var(X) = exp(2*\mu + \sigma^2)*(exp(\sigma^2) - 1)} and hence the coefficient of variation is \eqn{\sqrt{exp(\sigma^2) - 1}}{sqrt(exp(\sigma^2) - 1)} which is approximately \eqn{\sigma} when that is small (e.g., \eqn{\sigma < 1/2}). } %% Mode = exp(max(0, mu - sigma^2)) \note{ The cumulative hazard \eqn{H(t) = - \log(1 - F(t))}{H(t) = - log(1 - F(t))} is \code{-plnorm(t, r, lower = FALSE, log = TRUE)}. } \references{ Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) \emph{The New S Language}. Wadsworth & Brooks/Cole. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) \emph{Continuous Univariate Distributions}, volume 1, chapter 14. Wiley, New York. } \seealso{ \link{Distributions} for other standard distributions, including \code{\link{dnorm}} for the normal distribution. } \examples{ dlnorm(1) == dnorm(0) } \keyword{distribution}