% File src/library/stats/man/HoltWinters.Rd % Part of the R package, https://www.R-project.org % Copyright 1995-2018 R Core Team % Distributed under GPL 2 or later \name{HoltWinters} \alias{HoltWinters} \alias{print.HoltWinters} \alias{residuals.HoltWinters} \title{Holt-Winters Filtering} \description{ Computes Holt-Winters Filtering of a given time series. Unknown parameters are determined by minimizing the squared prediction error. } \usage{ HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL, seasonal = c("additive", "multiplicative"), start.periods = 2, l.start = NULL, b.start = NULL, s.start = NULL, optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1), optim.control = list()) } \arguments{ \item{x}{An object of class \code{ts}} \item{alpha}{\eqn{alpha} parameter of Holt-Winters Filter.} \item{beta}{\eqn{beta} parameter of Holt-Winters Filter. If set to \code{FALSE}, the function will do exponential smoothing.} \item{gamma}{\eqn{gamma} parameter used for the seasonal component. If set to \code{FALSE}, an non-seasonal model is fitted.} \item{seasonal}{Character string to select an \code{"additive"} (the default) or \code{"multiplicative"} seasonal model. The first few characters are sufficient. (Only takes effect if \code{gamma} is non-zero).} \item{start.periods}{Start periods used in the autodetection of start values. Must be at least 2.} \item{l.start}{Start value for level (a[0]).} \item{b.start}{Start value for trend (b[0]).} \item{s.start}{Vector of start values for the seasonal component (\eqn{s_1[0] \ldots s_p[0]}{s_1[0] \dots s_p[0]})} \item{optim.start}{Vector with named components \code{alpha}, \code{beta}, and \code{gamma} containing the starting values for the optimizer. Only the values needed must be specified. Ignored in the one-parameter case.} \item{optim.control}{Optional list with additional control parameters passed to \code{optim} if this is used. Ignored in the one-parameter case.} } \details{ The additive Holt-Winters prediction function (for time series with period length p) is \deqn{\hat Y[t+h] = a[t] + h b[t] + s[t - p + 1 + (h - 1) \bmod p],}{ Yhat[t+h] = a[t] + h * b[t] + s[t - p + 1 + (h - 1) mod p],} where \eqn{a[t]}, \eqn{b[t]} and \eqn{s[t]} are given by \deqn{a[t] = \alpha (Y[t] - s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])}{ a[t] = \alpha (Y[t] - s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])} \deqn{b[t] = \beta (a[t] -a[t-1]) + (1-\beta) b[t-1]}{ b[t] = \beta (a[t] - a[t-1]) + (1-\beta) b[t-1]} \deqn{s[t] = \gamma (Y[t] - a[t]) + (1-\gamma) s[t-p]}{ s[t] = \gamma (Y[t] - a[t]) + (1-\gamma) s[t-p]} The multiplicative Holt-Winters prediction function (for time series with period length p) is \deqn{\hat Y[t+h] = (a[t] + h b[t]) \times s[t - p + 1 + (h - 1) \bmod p].}{ Yhat[t+h] = (a[t] + h * b[t]) * s[t - p + 1 + (h - 1) mod p],} where \eqn{a[t]}, \eqn{b[t]} and \eqn{s[t]} are given by \deqn{a[t] = \alpha (Y[t] / s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])}{ a[t] = \alpha (Y[t] / s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])} \deqn{b[t] = \beta (a[t] - a[t-1]) + (1-\beta) b[t-1]}{ b[t] = \beta (a[t] - a[t-1]) + (1-\beta) b[t-1]} \deqn{s[t] = \gamma (Y[t] / a[t]) + (1-\gamma) s[t-p]}{ s[t] = \gamma (Y[t] / a[t]) + (1-\gamma) s[t-p]} The data in \code{x} are required to be non-zero for a multiplicative model, but it makes most sense if they are all positive. The function tries to find the optimal values of \eqn{\alpha} and/or \eqn{\beta} and/or \eqn{\gamma} by minimizing the squared one-step prediction error if they are \code{NULL} (the default). \code{optimize} will be used for the single-parameter case, and \code{optim} otherwise. For seasonal models, start values for \code{a}, \code{b} and \code{s} are inferred by performing a simple decomposition in trend and seasonal component using moving averages (see function \code{\link{decompose}}) on the \code{start.periods} first periods (a simple linear regression on the trend component is used for starting level and trend). For level/trend-models (no seasonal component), start values for \code{a} and \code{b} are \code{x[2]} and \code{x[2] - x[1]}, respectively. For level-only models (ordinary exponential smoothing), the start value for \code{a} is \code{x[1]}. } \value{ An object of class \code{"HoltWinters"}, a list with components: \item{fitted}{A multiple time series with one column for the filtered series as well as for the level, trend and seasonal components, estimated contemporaneously (that is at time t and not at the end of the series).} \item{x}{The original series} \item{alpha}{alpha used for filtering} \item{beta}{beta used for filtering} \item{gamma}{gamma used for filtering} \item{coefficients}{A vector with named components \code{a, b, s1, ..., sp} containing the estimated values for the level, trend and seasonal components} \item{seasonal}{The specified \code{seasonal} parameter} \item{SSE}{The final sum of squared errors achieved in optimizing} \item{call}{The call used} } \references{ C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages, \emph{ONR Research Memorandum, Carnegie Institute of Technology} \bold{52}. (reprint at \doi{10.1016/j.ijforecast.2003.09.015}). P. R. Winters (1960). Forecasting sales by exponentially weighted moving averages. \emph{Management Science}, \bold{6}, 324--342. \doi{10.1287/mnsc.6.3.324}. } \author{ David Meyer \email{David.Meyer@wu.ac.at} } \seealso{ \code{\link{predict.HoltWinters}}, \code{\link{optim}}. } % Differences seen on 32-bit Linux at -O3 \examples{ \dontshow{od <- options(digits = 5)} require(graphics) ## Seasonal Holt-Winters (m <- HoltWinters(co2)) plot(m) plot(fitted(m)) (m <- HoltWinters(AirPassengers, seasonal = "mult")) plot(m) ## Non-Seasonal Holt-Winters x <- uspop + rnorm(uspop, sd = 5) m <- HoltWinters(x, gamma = FALSE) plot(m) ## Exponential Smoothing m2 <- HoltWinters(x, gamma = FALSE, beta = FALSE) lines(fitted(m2)[,1], col = 3) \dontshow{options(od)} } \keyword{ts}