% File src/library/stats/man/Cauchy.Rd % Part of the R package, https://www.R-project.org % Copyright 1995-2014 R Core Team % Distributed under GPL 2 or later \name{Cauchy} \alias{Cauchy} \alias{dcauchy} \alias{pcauchy} \alias{qcauchy} \alias{rcauchy} \title{The Cauchy Distribution} \description{ Density, distribution function, quantile function and random generation for the Cauchy distribution with location parameter \code{location} and scale parameter \code{scale}. } \usage{ dcauchy(x, location = 0, scale = 1, log = FALSE) pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE) qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE) rcauchy(n, location = 0, scale = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{location, scale}{location and scale parameters.} \item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).} \item{lower.tail}{logical; if TRUE (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \value{ \code{dcauchy}, \code{pcauchy}, and \code{qcauchy} are respectively the density, distribution function and quantile function of the Cauchy distribution. \code{rcauchy} generates random deviates from the Cauchy. The length of the result is determined by \code{n} for \code{rcauchy}, and is the maximum of the lengths of the numerical arguments for the other functions. The numerical arguments other than \code{n} are recycled to the length of the result. Only the first elements of the logical arguments are used. } \details{ If \code{location} or \code{scale} are not specified, they assume the default values of \code{0} and \code{1} respectively. The Cauchy distribution with location \eqn{l} and scale \eqn{s} has density \deqn{f(x) = \frac{1}{\pi s} \left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}% }{f(x) = 1 / (\pi s (1 + ((x-l)/s)^2))} for all \eqn{x}. } \source{ \code{dcauchy}, \code{pcauchy} and \code{qcauchy} are all calculated from numerically stable versions of the definitions. \code{rcauchy} uses inversion. } \references{ Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) \emph{The New S Language}. Wadsworth & Brooks/Cole. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) \emph{Continuous Univariate Distributions}, volume 1, chapter 16. Wiley, New York. } \seealso{ \link{Distributions} for other standard distributions, including \code{\link{dt}} for the t distribution which generalizes \code{dcauchy(*, l = 0, s = 1)}. } \examples{ dcauchy(-1:4) } \keyword{distribution}